908 resultados para Prediction of random e_ects
Resumo:
This study was designed to test the utility of a revised theory of planned behavior in the prediction of intentions to volunteer among older people. Such a perspective allowed for the consideration of a broader range of social and contextual factors than has been examined in previous research on volunteer decision making among older people. The article reports the findings from a study that investigated volunteer intentions and behavior in a random sample of older people aged 65 to 74 years living in an Australian capital city. Results showed that, as predicted by the revised theory of planned behavior, intention to volunteer predicted subsequent reported volunteer behavior. Intention was, in turn, predicted by social norms (both subjective and behavioral), perceived behavioral control, and moral obligation, with the effect of attitude being mediated through moral obligation.
Resumo:
Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis. The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual-auditory stimulation and the other based on bimanual fingertapping sequences. The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Introduction Bioelectrical impedance analysis (BIA) is a useful field measure to estimate total body water (TBW). No prediction formulae have been developed or validated against a reference method in patients with pancreatic cancer. The aim of this study was to assess the agreement between three prediction equations for the estimation of TBW in cachectic patients with pancreatic cancer. Methods Resistance was measured at frequencies of 50 and 200 kHz in 18 outpatients (10 males and eight females, age 70.2 +/- 11.8 years) with pancreatic cancer from two tertiary Australian hospitals. Three published prediction formulae were used to calculate TBW - TBWs developed in surgical patients, TBWca-uw and TBWca-nw developed in underweight and normal weight patients with end-stage cancer. Results There was no significant difference in the TBW estimated by the three prediction equations - TBWs 32.9 +/- 8.3 L, TBWca-nw 36.3 +/- 7.4 L, TBWca-uw 34.6 +/- 7.6 L. At a population level, there is agreement between prediction of TBW in patients with pancreatic cancer estimated from the three equations. The best combination of low bias and narrow limits of agreement was observed when TBW was estimated from the equation developed in the underweight cancer patients relative to the normal weight cancer patients. When no established BIA prediction equation exists, practitioners should utilize an equation developed in a population with similar critical characteristics such as diagnosis, weight loss, body mass index and/or age. Conclusions Further research is required to determine the accuracy of the BIA prediction technique against a reference method in patients with pancreatic cancer.
Resumo:
The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.
Resumo:
"Lecture notes in computer science series, ISSN 0302-9743, vol. 9273"
Resumo:
Programa Doutoral em Matemática e Aplicações.
Resumo:
BACKGROUND: The synthesis of published research in systematic reviews is essential when providing evidence to inform clinical and health policy decision-making. However, the validity of systematic reviews is threatened if journal publications represent a biased selection of all studies that have been conducted (dissemination bias). To investigate the extent of dissemination bias we conducted a systematic review that determined the proportion of studies published as peer-reviewed journal articles and investigated factors associated with full publication in cohorts of studies (i) approved by research ethics committees (RECs) or (ii) included in trial registries. METHODS AND FINDINGS: Four bibliographic databases were searched for methodological research projects (MRPs) without limitations for publication year, language or study location. The searches were supplemented by handsearching the references of included MRPs. We estimated the proportion of studies published using prediction intervals (PI) and a random effects meta-analysis. Pooled odds ratios (OR) were used to express associations between study characteristics and journal publication. Seventeen MRPs (23 publications) evaluated cohorts of studies approved by RECs; the proportion of published studies had a PI between 22% and 72% and the weighted pooled proportion when combining estimates would be 46.2% (95% CI 40.2%-52.4%, I2 = 94.4%). Twenty-two MRPs (22 publications) evaluated cohorts of studies included in trial registries; the PI of the proportion published ranged from 13% to 90% and the weighted pooled proportion would be 54.2% (95% CI 42.0%-65.9%, I2 = 98.9%). REC-approved studies with statistically significant results (compared with those without statistically significant results) were more likely to be published (pooled OR 2.8; 95% CI 2.2-3.5). Phase-III trials were also more likely to be published than phase II trials (pooled OR 2.0; 95% CI 1.6-2.5). The probability of publication within two years after study completion ranged from 7% to 30%. CONCLUSIONS: A substantial part of the studies approved by RECs or included in trial registries remains unpublished. Due to the large heterogeneity a prediction of the publication probability for a future study is very uncertain. Non-publication of research is not a random process, e.g., it is associated with the direction of study findings. Our findings suggest that the dissemination of research findings is biased.
Resumo:
Background: Retrospective analyses suggest that personalized PK-based dosage might be useful for imatinib, as treatment response correlates with trough concentrations (Cmin) in cancer patients. Our objectives were to improve the interpretation of randomly measured concentrations and to confirm its efficiency before evaluating the clinical usefulness of systematic PK-based dosage in chronic myeloid leukemia patients. Methods and Results: A Bayesian method was validated for the prediction of individual Cmin on the basis of a single random observation, and was applied in a prospective multicenter randomized controlled clinical trial. 28 out of 56 patients were enrolled in the systematic dosage individualization arm and had 44 follow-up visits (their clinical follow-up is ongoing). PK-dose-adjustments were proposed in 39% having predicted Cmin significantly away from the target (1000 ng/ml). Recommendations were taken up by physicians in 57%, patients were considered non-compliant in 27%. Median Cmin at study inclusion was 754 ng/ml and differed significantly from the target (p=0.02, Wilcoxon test). On follow-up, Cmin was 984 ng/ml (p=0.82) in the compliant group. CV decreased from 46% to 27% (p=0.02, F-test). Conclusion: PK-based (Bayesian) dosage adjustment is able to bring individual drug exposure closer to a given therapeutic target. Its influence on therapeutic response remains to be evaluated.
Resumo:
Background: The imatinib trough plasma concentration (C(min)) correlates with clinical response in cancer patients. Therapeutic drug monitoring (TDM) of plasma C(min) is therefore suggested. In practice, however, blood sampling for TDM is often not performed at trough. The corresponding measurement is thus only remotely informative about C(min) exposure. Objectives: The objectives of this study were to improve the interpretation of randomly measured concentrations by using a Bayesian approach for the prediction of C(min), incorporating correlation between pharmacokinetic parameters, and to compare the predictive performance of this method with alternative approaches, by comparing predictions with actual measured trough levels, and with predictions obtained by a reference method, respectively. Methods: A Bayesian maximum a posteriori (MAP) estimation method accounting for correlation (MAP-ρ) between pharmacokinetic parameters was developed on the basis of a population pharmacokinetic model, which was validated on external data. Thirty-one paired random and trough levels, observed in gastrointestinal stromal tumour patients, were then used for the evaluation of the Bayesian MAP-ρ method: individual C(min) predictions, derived from single random observations, were compared with actual measured trough levels for assessment of predictive performance (accuracy and precision). The method was also compared with alternative approaches: classical Bayesian MAP estimation assuming uncorrelated pharmacokinetic parameters, linear extrapolation along the typical elimination constant of imatinib, and non-linear mixed-effects modelling (NONMEM) first-order conditional estimation (FOCE) with interaction. Predictions of all methods were finally compared with 'best-possible' predictions obtained by a reference method (NONMEM FOCE, using both random and trough observations for individual C(min) prediction). Results: The developed Bayesian MAP-ρ method accounting for correlation between pharmacokinetic parameters allowed non-biased prediction of imatinib C(min) with a precision of ±30.7%. This predictive performance was similar for the alternative methods that were applied. The range of relative prediction errors was, however, smallest for the Bayesian MAP-ρ method and largest for the linear extrapolation method. When compared with the reference method, predictive performance was comparable for all methods. The time interval between random and trough sampling did not influence the precision of Bayesian MAP-ρ predictions. Conclusion: Clinical interpretation of randomly measured imatinib plasma concentrations can be assisted by Bayesian TDM. Classical Bayesian MAP estimation can be applied even without consideration of the correlation between pharmacokinetic parameters. Individual C(min) predictions are expected to vary less through Bayesian TDM than linear extrapolation. Bayesian TDM could be developed in the future for other targeted anticancer drugs and for the prediction of other pharmacokinetic parameters that have been correlated with clinical outcomes.
Resumo:
BACKGROUND Waist circumference (WC) is a simple and reliable measure of fat distribution that may add to the prediction of type 2 diabetes (T2D), but previous studies have been too small to reliably quantify the relative and absolute risk of future diabetes by WC at different levels of body mass index (BMI). METHODS AND FINDINGS The prospective InterAct case-cohort study was conducted in 26 centres in eight European countries and consists of 12,403 incident T2D cases and a stratified subcohort of 16,154 individuals from a total cohort of 340,234 participants with 3.99 million person-years of follow-up. We used Prentice-weighted Cox regression and random effects meta-analysis methods to estimate hazard ratios for T2D. Kaplan-Meier estimates of the cumulative incidence of T2D were calculated. BMI and WC were each independently associated with T2D, with WC being a stronger risk factor in women than in men. Risk increased across groups defined by BMI and WC; compared to low normal weight individuals (BMI 18.5-22.4 kg/m(2)) with a low WC (<94/80 cm in men/women), the hazard ratio of T2D was 22.0 (95% confidence interval 14.3; 33.8) in men and 31.8 (25.2; 40.2) in women with grade 2 obesity (BMI≥35 kg/m(2)) and a high WC (>102/88 cm). Among the large group of overweight individuals, WC measurement was highly informative and facilitated the identification of a subgroup of overweight people with high WC whose 10-y T2D cumulative incidence (men, 70 per 1,000 person-years; women, 44 per 1,000 person-years) was comparable to that of the obese group (50-103 per 1,000 person-years in men and 28-74 per 1,000 person-years in women). CONCLUSIONS WC is independently and strongly associated with T2D, particularly in women, and should be more widely measured for risk stratification. If targeted measurement is necessary for reasons of resource scarcity, measuring WC in overweight individuals may be an effective strategy, since it identifies a high-risk subgroup of individuals who could benefit from individualised preventive action.
Resumo:
Status epilepticus (SE) is associated with significant mortality and morbidity. A reliable prognosis may help better manage medical resources and treatment strategies. We examined the role of preexisting comorbidities on the outcome of patients with SE, an aspect that has received little attention to date. We prospectively studied incident SE episodes in 280 adults occurring over 55 months in our tertiary care hospital, excluding patients with postanoxic encephalopathy. Different models predicting mortality and return to clinical baseline at hospital discharge were compared, which included demographics, SE etiology, a validated clinical Status Epilepticus Severity Score (STESS), and comorbidities (assessed with the Charlson Comorbidity Index) as independent variables. The overall short-term mortality was 14%, and only half of patients returned to their clinical baseline. On bivariate analyses, age, STESS, potentially fatal etiologies, and number of preexisting comorbidities were all significant predictors of both mortality and return to clinical baseline. As compared with the simplest predictive model (including demographics and deadly etiology), adding SE severity and comorbidities resulted in an improved predictive performance (C statistics 0.84 vs. 0.77 for mortality, and 0.86 vs. 0.82. for return to clinical baseline); comorbidities, however, were not independently related to outcome. Considering comorbidities and clinical presentation, in addition to age and etiology, slightly improves the prediction of SE outcome with respect to both survival and functional status. This analysis also emphasizes the robust predictive role of etiology and age.
Resumo:
BACKGROUND Identifying individuals at high risk of excess weight gain may help targeting prevention efforts at those at risk of various metabolic diseases associated with weight gain. Our aim was to develop a risk score to identify these individuals and validate it in an external population. METHODS We used lifestyle and nutritional data from 53°758 individuals followed for a median of 5.4 years from six centers of the European Prospective Investigation into Cancer and Nutrition (EPIC) to develop a risk score to predict substantial weight gain (SWG) for the next 5 years (derivation sample). Assuming linear weight gain, SWG was defined as gaining ≥ 10% of baseline weight during follow-up. Proportional hazards models were used to identify significant predictors of SWG separately by EPIC center. Regression coefficients of predictors were pooled using random-effects meta-analysis. Pooled coefficients were used to assign weights to each predictor. The risk score was calculated as a linear combination of the predictors. External validity of the score was evaluated in nine other centers of the EPIC study (validation sample). RESULTS Our final model included age, sex, baseline weight, level of education, baseline smoking, sports activity, alcohol use, and intake of six food groups. The model's discriminatory ability measured by the area under a receiver operating characteristic curve was 0.64 (95% CI = 0.63-0.65) in the derivation sample and 0.57 (95% CI = 0.56-0.58) in the validation sample, with variation between centers. Positive and negative predictive values for the optimal cut-off value of ≥ 200 points were 9% and 96%, respectively. CONCLUSION The present risk score confidently excluded a large proportion of individuals from being at any appreciable risk to develop SWG within the next 5 years. Future studies, however, may attempt to further refine the positive prediction of the score.
Resumo:
The space subdivision in cells resulting from a process of random nucleation and growth is a subject of interest in many scientific fields. In this paper, we deduce the expected value and variance of these distributions while assuming that the space subdivision process is in accordance with the premises of the Kolmogorov-Johnson-Mehl-Avrami model. We have not imposed restrictions on the time dependency of nucleation and growth rates. We have also developed an approximate analytical cell size probability density function. Finally, we have applied our approach to the distributions resulting from solid phase crystallization under isochronal heating conditions
Resumo:
BACKGROUND & AIMS: The host immune response during the chronic phase of hepatitis C virus infection varies among individuals; some patients have a no interferon (IFN) response in the liver, whereas others have full activation IFN-stimulated genes (ISGs). Preactivation of this endogenous IFN system is associated with nonresponse to pegylated IFN-α (pegIFN-α) and ribavirin. Genome-wide association studies have associated allelic variants near the IL28B (IFNλ3) gene with treatment response. We investigated whether IL28B genotype determines the constitutive expression of ISGs in the liver and compared the abilities of ISG levels and IL28B genotype to predict treatment outcome. METHODS: We genotyped 109 patients with chronic hepatitis C for IL28B allelic variants and quantified the hepatic expression of ISGs and of IL28B. Decision tree ensembles, in the form of a random forest classifier, were used to calculate the relative predictive power of these different variables in a multivariate analysis. RESULTS: The minor IL28B allele was significantly associated with increased expression of ISG. However, stratification of the patients according to treatment response revealed increased ISG expression in nonresponders, irrespective of IL28B genotype. Multivariate analysis of ISG expression, IL28B genotype, and several other factors associated with response to therapy identified ISG expression as the best predictor of treatment response. CONCLUSIONS: IL28B genotype and hepatic expression of ISGs are independent predictors of response to treatment with pegIFN-α and ribavirin in patients with chronic hepatitis C. The most accurate prediction of response was obtained with a 4-gene classifier comprising IFI27, ISG15, RSAD2, and HTATIP2.
Resumo:
Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy in many circumstances are species-specific training and the incompleteness of reference databases. Lately, comparative genome analysis has attracted increasing attention. Several analysis tools that are based on human/mouse comparisons are already available. Here, we present a program for the prediction of protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of homologous genomic sequences. In contrast to most existing tools, the accuracy of SGP-1 depends little on species-specific properties such as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at http://soft.ice.mpg.de/sgp-1. The source code, written in ANSI C, is available on request from the authors.