930 resultados para Potassium Selenate
Resumo:
Facilitated proton transfer across the water/1,2-dichloroethane (DCE) interface supported on the tips of micro- and nano-pipets by o-phenanthroline (Phen) was studied by using cyclic voltammetry. The formed micro- and nano-liquid/liquid interfaces functioned as micro- and nano-electrodes under certain experimental conditions. The dependence of the half-wave potentials on the aqueous solutions acidities was studied and the ratio of association constants between Phen and proton in the aqueous and DCE phases was calculated by the method proposed by Matsuda et al.. The standard rate constant (k(0)) and the transfer coefficient (alpha) evaluated by using nano-pipets were equal to 0.183 +/- 0.054 cm/s and 0.70 +/- 0.09, respectively.
Resumo:
Manganous hexacyanoferrate (MnHCF) supported on graphite powder was dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite, which was used as electrode material to construct a renewable three-dimensional MnHCF-modifed electrode. MnHCF acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry was exploited to investigate the dependence of electrochemical behavior on supporting electrolytes containing various cations. The chemically modified electrode can electrocatalytically oxidize L-cysteine, and exhibits a distinct advantage of polishing in the event of surface fouling, as well as simple preparation, good chemical and mechanical stability, and good repeatability of surface renewal.
Resumo:
In this paper, we studied the reactions of both potassium ferricyanide and hexaammineruthenium(III) chloride at a 4-aminobenzoic acid (4-ABA) modified glassy carbon electrode (GCE) by scanning electrochemical microscopy (SECM) in different pH solutions. The surface of the modified electrode has carboxyl groups, the dissociation of which are strongly dependent upon the solution pH values. The rate constant kb of the oxidation of ferrocyanide on the modified electrode can be obtained by fitting the experimental tip current-distance (I-T-d) curves with the theoretical values. The surface pK(a) of the 4-ABA modified GCE was estimated from the plot of standard rate constant k(o) versus the solution pH and is equal to 3.2, which is in good agreement with the reported result. The SECM approach curves for Ru(NH3)(6)(3+) both on the bare and the modified electrodes show similar diffusion control processes. These results can be explained by the electrostatic interactions between the modified electrode surface and the model compounds with different charges. (C) 2001 Elsevier Science BN. All rights reserved.
Resumo:
In this paper, we describe a simple procedure to make agar-gel microelectrodes by filling micropipettes. These microelectrodes were used to study K+ transfer across the agar-water \ 1,2-dichloroethane interface facilitated by dibenzo-18-crown-6 (DB18C6), and the transfer of tetraethylammonium (TEA(+)). The results observed were similar to those obtained at micro-liquid \ liquid interfaces. The effect of various amounts of agar in the aqueous phase was optimized and 3% agar was chosen based on the potential window and solidification time. The different shapes of micro-agar-gel electrodes were prepared in a similar way. The fabricated agar-gel microelectrodes obey the classical micro-disk steady-state current equation, which is different from the behavior of a normal micropipette filled with aqueous solution without silanization. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
(2,4-C7H11)(2)Yb . DME was synthesized by the reaction of YbCl3 with K(2,4-C7H11)(2,4-dimethylpentadienyl potassium), and the single crystal X-ray diffraction showed that the complex exists in a cis- staggered conformation. Thf crystal of the compound belongs to the monoclinic space group P2(1)/n with a = 0.675 2 (1) nm, b = 1.490 6 (1) nm, c = 1.529 3 (2) nm, beta = 97.55 (2)degrees, V = 1.977 79 (4) nm(3), Z = 4, F(000) = 735.8 e, mu = 49.49 cm(-1), R = 0.033 and R-w = 0.032. The title complex can be used as a catalyst for the polymerization of methyl methacrylate (MMA).
Resumo:
A series of high sulfonated poly(ether ether ketone)s were prepared by copolymerization of sodium 5,5 ' -carbonylbis (2-fluorobenzenesulfonate)(2),4,4 ' -difluorobenzophenone (1) and bisphenol A(3) in the presence of potassium carbonate in dimethylsulfoxide. The copolymers were characterized by IR and DSC, The influence of degree of sulfonation on the properties of copolymers, such as component, thermal stability, solubility and filming ability, was studied.
Resumo:
Graphite powder-supported nickel(II) hexacyanoferrate (NiHCF) was prepared by the in situ chemical deposition method and then dispersed into methyltrimethoxysilane-derived gels to form a conductive composite. The composite was used as electrode material to construct a surface-renewable three-dimensional NiHCF-modified carbon ceramic electrode. Electrochemical behavior of the chemically modified electrode was well characterized using cyclic and square-wave voltammetry. The electrode presented a good electrocatalytic activity toward the oxidization of thiosulfate and thus was used as an amperometric sensor for thiosulfate in the photographic waste effluent. In addition, the electrode exhibited a distinct advantage of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The effect of potassium thiocyanate on the partitioning of lysozyme and BSA in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system has been investigated. As a result of the addition of potassium thiocyanate to the PEG/ammonium sulfate system, the PEG/mixed salts aqueous two-phase system was formed. It was found that the potassium thiocyanate could alter the pH difference between the two phases, and, thus, influence the partition coefficients of the differently charged proteins. The relationship between partition coefficient of the proteins and pH difference between two phases has been discussed. It was proposed that the pH difference between two phases could be employed as the measurement of electrostatic driving force for the partitioning of charged proteins in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system.
Resumo:
In order to understand the relationship between the molecular orientation and optical properties of oligophenylenevinylene film, oriented thin films of 1,4-di(p-methoxystyryl)benzene (DSB-1) and 1,4-di(p-methoxystyryl)-2,5-dimethoxybenzene (DSB-2) were fabricated on a potassium bromide (KBr) (001) surface by the vacuum-evaporation method. The structures and optical properties of DSB films have been investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM) and polarized photoluminescence (PL) spectroscopy, respectively. DSB-1 molecules orient obliquely and/or parallel to the substrate surface depending on the substrate temperature. On the other hand, DSB-2 molecules tend to grow epitaxially with the molecular plane parallel to the substrate surface. The anisotropic molecular orientations represent the polarized PL. The epitaxial growth and molecular orientations observed by TEM and AFM at the local and microscopic scale are confirmed by polarized PL measurement on a macroscopic scale. (C) 1999 American Institute of Physics. [S0021-8979(99)01523-6].
Resumo:
A new photochromic bisphenoxynaphthacenequinone compound, 6,6'-[1-methylethylidenebis (4,1-phenyleneoxy)]bis (5,12-naphthacenequinone) (1), was synthesized by a two-step method, i.e., synthesis of 6-[4-(2-(4-hydroxyphenyl)isopropyl) phenoxy]-5, 12-naphthacenequinone (2) from 6-chloro-5, 12-naphthacenequinone (3) and bisphenol-A, and a further reaction of compound 2 in DMF/acetone mixed solvent in the presence of anhydrous potassium carbonate and potassium iodide. The crude product is obtained in a precipitate form and can easily be purified by recrystallization. The solvent composition has marked influence on the yield of the precipitated crude product in the second step.
Resumo:
The second-order nonlinear optical tensor coefficients of both KTiOPO4 (KTP) and KTiOAsO4 (KTA) are calculated from the chemical bond viewpoint. All constituent chemical bonds of both crystals are considered, and contributions of each type of bond to the total linearity and nonlinearity are determined. Calculated results agree satisfactorily with experimental data in both signs and numerical values. The calculation shows that though TiO6 groups and P(1)O-4 or As(1)O-4 groups have relatively larger linear contributions, they can only produce an advantageous environment for KOx (x = 8, 9) groups and P(2)O-4 or As(2)O-4 groups in nonlinear optical contributions. The origin of nonlinearity of KTP family crystals comes from the KOx (x = 8, 9) and P(2)O-4 groups in their crystal structures. Furthermore, the difference in optical nonlinearities of KTP type crystals is analyzed, based on the detailed calculation of nonlinearities of both KTP and KTA. (C) 1999 Academic Press.
Resumo:
The complex, K2.5Na2NH4[Mo2O2S2(cit)(2)]. 5H(2)O (1), was obtained by crystallization from a solution of (NH4)(2)MoS4, potassium citrate (K(3)cit) and hydroxyl sodium in methanol and water under an atmosphere of pure nitrogen at ambient temperature. The crystals are triclinic, space group
, a = 7.376 (3)Angstrom, b = 14.620 (2) Angstrom, c = 14.661 (1) Angstrom, alpha = 71.10 (1)degrees, beta = 81.77 (1)degrees, gamma = 78.27(2)degrees, R = 0.0584 for 2545 observed (I > 2 sigma (I)) reflections. Single crystal structure analysis reveals that citrate ligand coordinated to molybdenum atom through two carboxylato oxygens and one deprotonated hydroxyl oxygen together with two bridging sulfur atoms and a terminal oxygen atom completes distorted coordination octahedron around each molybdenum atom. Principal dimensions are: Mo = O-t, 1.707 Angstrom (av); Mo-S-b, 2.341 Angstrom (av); Mo-O-(hydroxyl), 2.021 Angstrom (av); Mo-O(alpha-carboxyl), 2.1290 Angstrom (av) and Mo-O(beta-carboxyl), 2.268(av) Angstrom. IR spectrum is in agreement with the structure.
Resumo:
Some novel macrocyclic (arylene ether sulfone) containing cardo groups and (arylene ether ketone sulfone) oligomers have been synthesized in high yields by a nucleophilic aromatic substitution reaction of 4,4'-difluorophenylsulfone with bisphenols in the presence of anhydrous potassium carbonate under a pseudo-high-dilution condition. Detailed structural characterization of these oligomers by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS), fast atom bombardment mass spectrometry (f.a.b.-m.s.), nuclear magnetic resonance spectrometry (n.m.r.) and single-crystal X-ray structure analysis confirms their cyclic nature, and the composition of the oligomeric mixtures is provided by g.p.c. analysis. Ring polymerization of cyclic oligomers 3a to a high molecular weight polymer with M-w of 59.1 k was achieved by heating at 290 degrees C for 40 min in the presence of a nucleophilic initiator. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A new monomer, sodium 5,5'-carbonylbis(2-fluorobenzenesulfonate) (1), was synthesized by sulfonation of 4,4'-difluorobenzophenone (2) with fuming sulfuric acid. Poly(ether ether ketone)s containing sodium sulfonate groups were synthesized directly via aromatic nucleophilic substitution from the sodium sulfonate-functionalized monomer 1 and Bisphenol A (3) in the presence of potassium carbonate in dimethyl sulfoxide. The polycondensation proceeds without any side reactions. The differential scanning calorimetry measurement indicated that the polymers are amorphous and the glass transition temperatures increase with the content of sodium sulfonate groups in the polymer chain. The degree of substitution with sodium sulfonate groups has strong influence on their thermal stability and solubility.
Resumo:
Copolymers based on monomers phenolphthalein (PP)/4,4'-thiodiphenol (Bis-T)/4,4'-dichlorodiphenylsulfone (DCDPS) were prepared by a route involving the toluene, N-methyl-2-pyrrolidone and anhydrous potassium carbonate synthesis. The range of optimum reaction temperature was between 185 and 195 degrees C. The copolymers were characterized by C-13 NMR, differential scanning calorimetry (DSC) and torsion braid analysis. It was found that all of the copolymers were random and homogeneous and their glass transition temperatures (T-g) decreased linearly with an increase of Bis-T contents in the copolymers. The thermal stability determined by thermogravimetry analysis in air atmosphere indicated that the copolymer had better resistance to thermo-oxidative degradation. Dynamic mechanical measurement showed that (PP/Bis-T) PES copolymers containing 0-50 mol% of Bis-T components had two secondary relaxations. (C) 1998 Elsevier Science Ltd. All rights reserved.