885 resultados para Post-separation parental conflict
Resumo:
Unilateral ischemia in the right cerebral hemisphere of the rat was induced by ligation of the right common carotid artery coupled with controlled hemorrhage to produce hypotension (25±8 mm/Hg). Where indicated after 30 min of ischemia, the withdrawn blood was reinfused to restore arterial pressure to normal. Mitochondria isolated from the ipsilateral hemisphere after 30 min of ischemia showed significantly lower respiratory rates than the organelles isolated from the contralateral side. Oxidation of NAD+-linked substrates was more sensitive to inhibition in ischemia (30%) than was of ferrocytochromec (12%), succinate oxidation being intermediate. The activities of membrane-bound dehydrogenases (both NADH and succinate-linked) were also significantly lowered. Ischemia did not affect the cytochrome content of mitochondria. Respiratory activity (NAD+-linked) of mitochondria isolated from the ipsilateral hemisphere was twice as sensitive to inhibition by fatty acid as was of preparations from the contralateral side. Mitochondria isolated from cerebral cortex after 90 min of post-ischemic reperfusion showed no significant improvement in the rate of substrate oxidation. Adenine nucleotide translocase activity and energy-dependent Ca2+ uptake, both of which decreased significantly in mitochondria isolated from the ischemic brain, showed little recovery, on reperfusion. These observations suggested the strong possibility that the deleterious effects of ischemia on mitochondrial respiratory function might be mediated by free fatty acids that are known to accumulate in large amounts in ischemic tissues. The pattern of inhibition of ATPase activity was consistent with this view.
Resumo:
The presence of cell agglomerates has been found to influence significantly the rates of liquid drainage from static foams. The process of drainage has been modelled by considering the foam to be made of pentagonal dodecahedral bubbles yielding films, nearly horizontal and nearly vertical Plateau borders. The films are assumed to drain into both kinds of Plateau borders equally. The horizontal Plateau borders are assumed to receive liquid from the films and drain into the vertical Plateau borders, which, in turn, form the main flow paths for gravity drainage. The drainage process is assumed to be similar to that for pure liquid until a stage is reached where the size of the cell agglomerates become equivalent to those of films and Plateau borders. Thereafter, a squeezing flow mechanism has been formulated where the aggromerates deform and flow. The model based on the above assumptions has been verified against experimental results and has been found to predict not only drainage data but also the separation of cell agglomerates from broths.
Resumo:
Many of the most intriguing quantum effects are observed or could be measured in transport experiments through nanoscopic systems such as quantum dots, wires and rings formed by large molecules or arrays of quantum dots. In particular, the separation of charge and spin degrees of freedom and interference effects have important consequences in the conductivity through these systems. Charge-spin separation was predicted theoretically in one-dimensional strongly inter-acting systems (Luttinger liquids) and, although observed indirectly in several materials formed by chains of correlated electrons, it still lacks direct observation. We present results on transport properties through Aharonov-Bohmrings (pierced by a magnetic flux) with one or more channels represented by paradigmatic strongly-correlated models. For a wide range of parameters we observe characteristic dips in the conductance as a function of magnetic flux which are a signature of spin and charge separation. Interference effects could also be controlled in certain molecules and interesting properties could be observed. We analyze transport properties of conjugated molecules, benzene in particular, and find that the conductance depends on the lead configuration. In molecules with translational symmetry, the conductance can be controlled by breaking or restoring this symmetry, e.g. by the application of a local external potential. These results open the possibility of observing these peculiar physical properties in anisotropic ladder systems and in real nanoscopic and molecular devices.
Resumo:
Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 ( glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the ``intron'' regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing.
Resumo:
Coalescence processes are investigated during phase separation in a density-matched liquid mixture (partially deuterated cyclohexane and methanol) under near-critical conditions. As a result of the interplay between capillary and lubrication forces, ''nose'' coalescence appears to be always associated with the slow growth of isolated droplets (exponent almost-equal-to 1/3), whereas ''dimple'' coalescence corresponds to the fast growth of interconnected droplets (exponent almost-equal-to 1). At each stage of growth, the distribution of droplets trapped during dimple coalescence is reminiscent of all of the previous coalescence events.
Resumo:
The phase separation in fluids close to a critical point can be observed in the form of either an interconnected pattern (critical case) or a disconnected pattern (off-critical case). These two regimes have been investigated in different ways. First, a sharp change in pattern is shown to occur very close to the critical point when the composition is varied. No crossover has been observed between the t1 behaviour (interconnected) and a t1/3 behaviour (disconnected), where t is time. This latter growth law, which occurs in the case of compact droplets, will be discussed. Second, it has been observed that a growing interconnected pattern leaves a signature in the form of small droplets. The origin of such a distribution will be discussed in terms of coalescence of domains. No distribution of this kind is observed in the off-critical case.
Resumo:
When freshly starved amoebae of Dictyostelium discoideum are stained with chlortetracycline (CTC), a cell type-specific fluorescent probe for membrane-associated calcium (Ca2+) the resulting fluorescence distribution falls into two functional classes. Fluorescence-activated cell sorting shows that highly fluorescing amoebae tend to enter the prestalk pathway while those with low fluorescence tend to become prespores. In the light of previous findings, these results indicate that in addition to cell cycle phase at starvation, phenotypic variation in the level of sequestered calcium is an early correlate of cell fate.
Resumo:
The as-deposited and annealed radio frequency reactive magnetron sputtered tantalum oxide (Ta2O5) films were characterized by studying the chemical binding configuration, structural and electrical properties. X-ray photoelectron spectroscopy and X-ray diffraction analysis of the films elucidate that the film annealed at 673 K was stoichiometric with orthorhombic beta-phase Ta2O5. The dielectric constant values of the tantalum oxide capacitors with the sandwich structure of Al/Ta2O5/Si were in the range from 14 to 26 depending on the post-deposition annealing temperature. The leakage current density was < 20 nA cm(-2) at the gate bias voltage of 0.04 MV/cm for the annealed films. The electrical conduction mechanism observed in the films was Poole-Frenkel. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this letter, we propose a method for blind separation of d co-channel BPSK signals arriving at an antenna array. Our method involves two steps. In the first step, the received data vectors at the output of the array is grouped into 2d clusters. In the second step, we assign the 2d d-tuples with ±1 elements to these clusters in a consistent fashion. From the knowledge of the cluster to which a data vector belongs, we estimate the bits transmitted at that instant. Computer simulations are used to study the performance of our method
Resumo:
A binary aqueous suspension of large (L) and small (S) nearly-hard-sphere colloidal polystyrene spheres is shown to segregate spontaneously into L-rich and S-rich regions for suitable choices of volume fraction and size ratio. This is the first observation of such purely entropic phase separation of chemically identical species in which at least one component remains fluid. Simple theoretical arguments are presented to make this effect plausible.
Resumo:
E glass epoxy laminates of thicknesses in the range 2-5 mm were subjected to repeated impacts. For each thickness the number of hits to cause tup penetration was determined and the value of this number was higher the larger the thickness of the laminate tested. The C-scan, before and after impact, was done to obtain information regarding flaw distribution. Short beam shear test samples were made from locations at fixed distances from impact point and tested. The samples closer to the zone of impact showed lower strength values. Scanning fractography revealed shear deformation features for these samples and brittle fracture features for the region near the zone of impact.
Resumo:
Eight new vesicle-forming dimeric surfactants are synthesized: the polar headgroup separation in such dimeric amphiphiles strongly influences their vesicular thermotropic phase-transition behaviour.