935 resultados para Position spaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize the essential spectra of Toeplitz operators Ta on weighted Bergman spaces with matrix-valued symbols; in particular we deal with two classes of symbols, the Douglas algebra C+H∞ and the Zhu class Q := L∞ ∩VMO∂ . In addition, for symbols in C+H∞ , we derive a formula for the index of Ta in terms of its symbol a in the scalar-valued case, while in the matrix-valued case we indicate that the standard reduction to the scalar-valued case fails to work analogously to the Hardy space case. Mathematics subject classification (2010): 47B35,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss some of the recent progress in the field of Toeplitz operators acting on Bergman spaces of the unit disk, formulate some new results, and describe a list of open problems -- concerning boundedness, compactness and Fredholm properties -- which was presented at the conference "Recent Advances in Function Related Operator Theory'' in Puerto Rico in March 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the boundedness of Toeplitz operators $T_a$ with locally integrable symbols on Bergman spaces $A^p(\mathbb{D})$, $1 < p < \infty$. Our main result gives a sufficient condition for the boundedness of $T_a$ in terms of some ``averages'' (related to hyperbolic rectangles) of its symbol. If the averages satisfy an ${o}$-type condition on the boundary of $\mathbb{D}$, we show that the corresponding Toeplitz operator is compact on $A^p$. Both conditions coincide with the known necessary conditions in the case of nonnegative symbols and $p=2$. We also show that Toeplitz operators with symbols of vanishing mean oscillation are Fredholm on $A^p$ provided that the averages are bounded away from zero, and derive an index formula for these operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study Hankel operators on the weighted Fock spaces Fp. The boundedness and compactness of these operators are characterized in terms of BMO and VMO, respectively. Along the way, we also study Berezin transform and harmonic conjugates on the plane. Our results are analogous to Zhu's characterization of bounded and compact Hankel operators on Bergman spaces of the unit disk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. We prove that the vast majority of JC∗-triples satisfy the condition of universal reversibility. Our characterisation is that a JC∗-triple is universally reversible if and only if it has no triple homomorphisms onto Hilbert spaces of dimension greater than two nor onto spin factors of dimension greater than four. We establish corresponding characterisations in the cases of JW∗-triples and of TROs (regarded as JC∗-triples). We show that the distinct natural operator space structures on a universally reversible JC∗-triple E are in bijective correspondence with a distinguished class of ideals in its universal TRO, identify the Shilov boundaries of these operator spaces and prove that E has a unique natural operator space structure precisely when E contains no ideal isometric to a nonabelian TRO. We deduce some decomposition and completely contractive properties of triple homomorphisms on TROs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines selected methodological insights that complexity theory might provide for planning. In particular, it focuses on the concept of fractals and, through this concept, how ways of organising policy domains across scales might have particular causal impacts. The aim of this article is therefore twofold: (a) to position complexity theory within social science through a ‘generalised discourse’, thereby orienting it to particular ontological and epistemological biases and (b) to reintroduce a comparatively new concept – fractals – from complexity theory in a way that is consistent with the ontological and epistemological biases argued for, and expand on the contribution that this might make to planning. Complexity theory is theoretically positioned as a neo-systems theory with reasons elaborated. Fractal systems from complexity theory are systems that exhibit self-similarity across scales. This concept (as previously introduced by the author in ‘Fractal spaces in planning and governance’) is further developed in this article to (a) illustrate the ontological and epistemological claims for complexity theory, and to (b) draw attention to ways of organising policy systems across scales to emphasise certain characteristics of the systems – certain distinctions. These distinctions when repeated across scales reinforce associated processes/values/end goals resulting in particular policy outcomes. Finally, empirical insights from two case studies in two different policy domains are presented and compared to illustrate the workings of fractals in planning practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to show that the group SE(3) with an imposed Lie-Poisson structure can be used to determine the trajectory in a spatial frame of a rigid body in Euclidean space. Identical results for the trajectory are obtained in spherical and hyperbolic space by scaling the linear displacements appropriately since the influence of the moments of inertia on the trajectories tends to zero as the scaling factor increases. The semidirect product of the linear and rotational motions gives the trajectory from a body frame perspective. It is shown that this cannot be used to determine the trajectory in the spatial frame. The body frame trajectory is thus independent of the velocity coupling. In addition, it is shown that the analysis can be greatly simplified by aligning the axes of the spatial frame with the axis of symmetry which is unchanging for a natural system with no forces and rotation about an axis of symmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider in this paper the solvability of linear integral equations on the real line, in operator form (λ−K)φ=ψ, where and K is an integral operator. We impose conditions on the kernel, k, of K which ensure that K is bounded as an operator on . Let Xa denote the weighted space as |s|→∞}. Our first result is that if, additionally, |k(s,t)|⩽κ(s−t), with and κ(s)=O(|s|−b) as |s|→∞, for some b>1, then the spectrum of K is the same on Xa as on X, for 01. As an example where kernels of this latter form occur we discuss a boundary integral equation formulation of an impedance boundary value problem for the Helmholtz equation in a half-plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses concepts of space within the planning literature, the issues they give rise to and the gaps they reveal. It then introduces the notion of 'fractals' borrowed from complexity theory and illustrates how it unconsciously appears in planning practice. It then moves on to abstract the core dynamics through which fractals can be consciously applied and illustrates their working through a reinterpretation of the People's Planning Campaign of Kerala, India. Finally it highlights the key contribution of the fractal concept and the advantages that this conceptualisation brings to planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through study of observations and coupled climate simulations, it is argued that the mean position of the Inter-Tropical Convergence Zone (ITCZ) north of the equator is a consequence of a northwards heat transport across the equator by ocean circulation. Observations suggest that the hemispheric net radiative forcing of climate at the top of the atmosphere is almost perfectly symmetric about the equator, and so the total (atmosphere plus ocean) heat transport across the equator is small (order 0.2 PW northwards). Due to the Atlantic ocean’s meridional overturning circulation, however, the ocean carries significantly more heat northwards across the equator (order 0.4 PW) than does the coupled system. There are two primary consequences. First, atmospheric heat transport is southwards across the equator to compensate (0.2 PW southwards), resulting in the ITCZ being displaced north of the equator. Second, the atmosphere, and indeed the ocean, is slightly warmer (by perhaps 2 °C) in the northern hemisphere than in the southern hemisphere. This leads to the northern hemisphere emitting slightly more outgoing longwave radiation than the southern hemisphere by virtue of its relative warmth, supporting the small northward heat transport by the coupled system across the equator. To conclude, the coupled nature of the problem is illustrated through study of atmosphere–ocean–ice simulations in the idealized setting of an aquaplanet, resolving the key processes at work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.

Relevância:

20.00% 20.00%

Publicador: