895 resultados para Porous polyethylene
Resumo:
This paper refers to the numerical solution of the classical Darcy's problem of plane fluid through isotropic media. Regarding the numerical procedure,the Laplace equation, is a classical one in mathematical physics and several procedures have been devised in order to solve it. So as to show the capability of the method, the paper presents some exemples.
Resumo:
A simple and scalable chemical approach has been proposed for the generation of 1-dimensional nanostructures of two most important inorganic materials such as zinc oxide and cadmium sulfide. By controlling the growth habit of the nanostructures with manipulated reaction conditions, the diameter and uniformity of the nanowires/nanorods were tailored. We studied extensively optical behavior and structural growth of CdS NWs and ZnO NRs doped ferroelectric liquid crystal Felix-017/100. Due to doping band gap has been changed and several blue shifts occurred in photoluminescence spectra because of nanoconfinement effect and mobility of charges.
Resumo:
Scaling is becoming an increasingly important topic in the earth and environmental sciences as researchers attempt to understand complex natural systems through the lens of an ever-increasing set of methods and scales. The guest editors introduce the papers in this issue’s special section and present an overview of some of the work being done. Scaling remains one of the most challenging topics in earth and environmental sciences, forming a basis for our understanding of process development across the multiple scales that make up the subsurface environment. Tremendous progress has been made in discovery, explanation, and applications of scaling. And yet much more needs to be done and is being done as part of the modern quest to quantify, analyze, and manage the complexity of natural systems. Understanding and succinct representation of scaling properties can unveil underlying relationships between system structure and response functions, improve parameterization of natural variability and heterogeneity, and help us address societal needs by effectively merging knowledge acquired at different scales.
Resumo:
The phenomenon of self-induced vibrations of prismatic beams in a cross-flow has been studied for decades, but it is still of great interest due to their important effects in many different industrial applications. This paper presents the experimental study developed on a prismatic beam with H-section.The aim of this analysis is to add some additional insight into the behaviour of the flow around this type of bodies, in order to reduce galloping and even to avoid it. The influence of some relevant geometrical parameters that define the H-section on the translational galloping behaviour of these beams has been analysed. Wind loads coefficients have been measured through static wind tunnel tests and the Den Hartog criterion applied to elucidate the influence of geometrical parameters on the galloping properties of the bodies under consideration.These results have been completed with surface pressure distribution measurements and, besides, dynamic tests have been also performed to verify the static criterion. Finally, the morphology of the flow past the tested bodies has been visualised by using smoke visualization techniques. Since the rectangular section beam is a limiting case of the H-section configuration, the results here obtained are compared with the ones published in the literature concerning rectangular configurations; the agreement is satisfactory.
Resumo:
A general fractional porous medium equation
Resumo:
This special issue gathers together a number of recent papers on fractal geometry and its applications to the modeling of flow and transport in porous media. The aim is to provide a systematic approach for analyzing the statics and dynamics of fluids in fractal porous media by means of theory, modeling and experimentation. The topics covered include lacunarity analyses of multifractal and natural grayscale patterns, random packing's of self-similar pore/particle size distributions, Darcian and non-Darcian hydraulic flows, diffusion within fractals, models for the permeability and thermal conductivity of fractal porous media and hydrophobicity and surface erosion properties of fractal structures.
Resumo:
An asymptotic solution is obtained corresponding to a very intense pulse: a sudden strong increase and fast subsequent decrease of the water level at the boundary of semi-infinite fissurized-porous stratum. This flow is of practical interest: it gives a model of a groundwater flow after a high water period or after a failure of a dam around a collector of liquid waste. It is demonstrated that the fissures have a dramatic influence on the groundwater flow, increasing the penetration depth and speed of fluid penetration into the stratum. A characteristic property of the flow in fissurized-porous stratum is the rapid breakthrough of the fluid at the first stage deeply into the stratum via a system of cracks, feeding of porous blocks by the fluid in cracks, and at a later stage feeding of advancing fluid flow in fissures by the fluid, accumulated in porous blocks.
Resumo:
Chemical modification of proteins with polyethylene glycol (PEGylation) can increase plasma half-lives, stability, and therapeutic potency. To make a PEGylated recombinant immunotoxin with improved therapeutic properties, we prepared a mutant of anti-Tac(Fv)-PE38 (LMB-2), a recombinant immunotoxin composed of a single-chain Fv fragment of the anti-human Tac monoclonal antibody to the IL-2 receptor α subunit fused to a 38-kDa fragment of Pseudomonas exotoxin. For site-specific PEGylation of LMB-2, one cysteine residue was introduced into the peptide connector (ASGCGPE) between the Fv and the toxin. This mutant LMB-2 (cys1-LMB-2), which retained full cytotoxic activity, was then site-specifically conjugated with 5 or 20 kDa of polyethylene glycol-maleimide. When compared with unmodified LMB-2, both PEGylated immunotoxins showed similar cytotoxic activities in vitro but superior stability at 37°C in mouse serum, a 5- to 8-fold increase in plasma half-lives in mice, and a 3- to 4-fold increase in antitumor activity. This was accompanied by a substantial decrease in animal toxicity and immunogenicity. Site-specific PEGylation of recombinant immunotoxins may increase their therapeutic potency in humans.
Resumo:
Xylem cavitation in winter and recovery from cavitation in the spring were visualized in two species of diffuse-porous trees, Betula platyphylla var. japonica Hara and Salix sachalinensis Fr. Schm., by cryo-scanning electron microscopy after freeze-fixation of living twigs. Water in the vessel lumina of the outer three annual rings of twigs of B. platyphylla var. japonica and of S. sachalinensis gradually disappeared during the period from January to March, an indication that cavitation occurs gradually in these species during the winter. In April, when no leaves had yet expanded, the lumina of most of the vessels of both species were filled with water. Many vessel lumina in twigs of both species were filled with water during the period from the subsequent growth season to the beginning of the next winter. These observations indicate that recovery in spring occurs before the onset of transpiration and that water transport through twigs occurs during the subsequent growing season. We found, moreover, that vessels repeat an annual cycle of winter cavitation and spring recovery from cavitation for several years until irreversible cavitation occurs.
Resumo:
Polyethylene glycol (PEG), which is often used to impose low water potentials (ψw) in solution culture, decreases O2 movement by increasing solution viscosity. We investigated whether this property causes O2 deficiency that affects the elongation or metabolism of maize (Zea mays L.) primary roots. Seedlings grown in vigorously aerated PEG solutions at ambient solution O2 partial pressure (pO2) had decreased steady-state root elongation rates, increased root-tip alanine concentrations, and decreased root-tip proline concentrations relative to seedlings grown in PEG solutions of above-ambient pO2 (alanine and proline accumulation are responses to hypoxia and low ψw, respectively). Measurements of root pO2 were made using an O2 microsensor to ensure that increased solution pO2 did not increase root pO2 above physiological levels. In oxygenated PEG solutions that gave maximal root elongation rates, root pO2 was similar to or less than (depending on depth in the tissue) pO2 of roots growing in vermiculite at the same ψw. Even without PEG, high solution pO2 was necessary to raise root pO2 to the levels found in vermiculite-grown roots. Vermiculite was used for comparison because it has large air spaces that allow free movement of O2 to the root surface. The results show that supplemental oxygenation is required to avoid hypoxia in PEG solutions. Also, the data suggest that the O2 demand of the root elongation zone may be greater at low relative to high ψw, compounding the effect of PEG on O2 supply. Under O2-sufficient conditions root elongation was substantially less sensitive to the low ψw imposed by PEG than that imposed by dry vermiculite.
Resumo:
Polyethylene chains in the amorphous region between two crystalline lamellae M unit apart are modeled as random walks with one-step memory on a cubic lattice between two absorbing boundaries. These walks avoid the two preceding steps, though they are not true self-avoiding walks. Systems of difference equations are introduced to calculate the statistics of the restricted random walks. They yield that the fraction of loops is (2M - 2)/(2M + 1), the fraction of ties 3/(2M + 1), the average length of loops 2M - 0.5, the average length of ties 2/3M2 + 2/3M - 4/3, the average length of walks equals 3M - 3, the variance of the loop length 16/15M3 + O(M2), the variance of the tie length 28/45M4 + O(M3), and the variance of the walk length 2M3 + O(M2).
Resumo:
Experimental evidence is presented that supports the possibility of building a "molecular drill." By the adsorption of a vesicle onto a porous substrate (specifically, a lycopode grain), it was possible to increase the permeability of the vesicle by locally stretching its membrane. Molecules contained within the vesicle, which could not cross the membrane, were delivered to the porous substrate upon adsorption. This general process could provide another method for drug delivery and targeting.
Resumo:
Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.
Resumo:
In this work, new coordination polymers based on two different classes of synthons are presented. In addition, manganese-based metallacrowns of magnetic interest are studied, both in the solid state and in solution. Firstly, functionalized bispyrazolylmethane derivatives are employed as bridging ligands for the establishment of silver-based coordination polymers; the influence of the substituent groups and of the counterions on the supramolecular packing is also investigated. Secondly, the use of metallacrown (MC) complexes as building blocks for porous coordination polymers is discussed. The design of a new metallacrown species is presented, which shows the tendency of aggregating in the solid state to form coordination polymers. Two new coordination polymers are indeed reported, of which one is the first MC-based permanently porous coordination network ever presented. The solid resists solvent evacuation and exhibits gas uptake ability. Furthermore, the isolation and characterization of a new metallacryptate species based on manganese ions is described. The metal-rich structure comprises nine Mn(II)/Mn(III) ions and presents an inverse metallacrown core subunit that binds a μ3-O2- ion. The metallacryptate is isolated in high yields and stable in solution. Lastly, a family of 3d-4f heterometallic metallacrowns is characterized in solution by means of UV-Vis spectrophotometry and of paramagnetically shifted 1H-NMR. The lanthanide-induced shifts observed in the spectra are employed to describe the molecules behaviour in solution and are qualitatively related to the magnetic properties of the compounds.