989 resultados para Polynomial Algorithm
Resumo:
This paper presents a genetic algorithm for finding a constrained minimum spanning tree. The problem is of relevance in the design of minimum cost communication networks, where there is a need to connect all the terminals at a user site to a terminal concentrator in a multipoint (tree) configuration, while ensuring that link capacity constraints are not violated. The approach used maintains a distinction between genotype and phenotype, which produces superior results to those found using a direct representation in a previous study.
Resumo:
This paper examines scheduling problems in which the setup phase of each operation needs to be attended by a single server, common for all jobs and different from the processing machines. The objective in each situation is to minimize the makespan. For the processing system consisting of two parallel dedicated machines we prove that the problem of finding an optimal schedule is NP-hard in the strong sense even if all setup times are equal or if all processing times are equal. For the case of m parallel dedicated machines, a simple greedy algorithm is shown to create a schedule with the makespan that is at most twice the optimum value. For the two machine case, an improved heuristic guarantees a tight worst-case ratio of 3/2. We also describe several polynomially solvable cases of the later problem. The two-machine flow shop and the open shop problems with a single server are also shown to be NP-hard in the strong sense. However, we reduce the two-machine flow shop no-wait problem with a single server to the Gilmore-Gomory traveling salesman problem and solve it in polynomial time. (c) 2000 John Wiley & Sons, Inc.
Resumo:
This paper considers the problem of processing n jobs in a two-machine non-preemptive open shop to minimize the makespan, i.e., the maximum completion time. One of the machines is assumed to be non-bottleneck. It is shown that, unlike its flow shop counterpart, the problem is NP-hard in the ordinary sense. On the other hand, the problem is shown to be solvable by a dynamic programming algorithm that requires pseudopolynomial time. The latter algorithm can be converted into a fully polynomial approximation scheme that runs in time. An O(n log n) approximation algorithm is also designed whi finds a schedule with makespan at most 5/4 times the optimal value, and this bound is tight.
Resumo:
Multilevel algorithms are a successful class of optimization techniques which addresses the mesh partitioning problem. They usually combine a graph contraction algorithm together with a local optimization method which refines the partition at each graph level. In this paper we present an enhancement of the technique which uses imbalance to achieve higher quality partitions. We also present a formulation of the Kernighan-Lin partition optimization algorithm which incorporates load-balancing. The resulting algorithm is tested against a different but related state-of-the-art partitioner and shown to provide improved results.
Resumo:
We describe a heuristic method for drawing graphs which uses a multilevel technique combined with a force-directed placement algorithm. The multilevel process groups vertices to form clusters, uses the clusters to define a new graph and is repeated until the graph size falls below some threshold. The coarsest graph is then given an initial layout and the layout is successively refined on all the graphs starting with the coarsest and ending with the original. In this way the multilevel algorithm both accelerates and gives a more global quality to the force- directed placement. The algorithm can compute both 2 & 3 dimensional layouts and we demonstrate it on a number of examples ranging from 500 to 225,000 vertices. It is also very fast and can compute a 2D layout of a sparse graph in around 30 seconds for a 10,000 vertex graph to around 10 minutes for the largest graph. This is an order of magnitude faster than recent implementations of force-directed placement algorithms.
Resumo:
It is known that for the open shop scheduling problem to minimize the makespan there exists no polynomial-time heuristic algorithm that guarantees a worst-case performance ratio better than 5/4, unless P6≠NP. However, this result holds only if the instance of the problem contains jobs consisting of at least three operations. This paper considers the open shop scheduling problem, provided that each job consists of at most two operations, one of which is to be processed on one of the m⩾2 machines, while the other operation must be performed on the bottleneck machine, the same for all jobs. For this NP-hard problem we present a heuristic algorithm and show that its worst-case performance ratio is 5/4.
Resumo:
A flexible elimination algorithm is presented and is applied to the solution of dense systems of linear equations. Properties of the algorithm are exploited in relation to panel element methods for potential flow and subsonic compressible flow. Further properties in relation to distributed computing are also discussed.
Resumo:
Numerical solutions of realistic 2-D and 3-D inverse problems may require a very large amount of computation. A two-level concept on parallelism is often used to solve such problems. The primary level uses the problem partitioning concept which is a decomposition based on the mathematical/physical problem. The secondary level utilizes the widely used data partitioning concept. A theoretical performance model is built based on the two-level parallelism. The observed performance results obtained from a network of general purpose Sun Sparc stations are compared with the theoretical values. Restrictions of the theoretical model are also discussed.
Resumo:
A mathematical model and a numerical scheme for the inverse determination of heat sources generated by means of a welding process is presented in this paper. The accuracy of the heat source retrieval is discussed.
Resumo:
Existing election algorithms suffer limited scalability. This limit stems from the communication design which in turn stems from their fundamentally two-state behaviour. This paper presents a new election algorithm specifically designed to be highly scalable in broadcast networks whilst allowing any processing node to become coordinator with initially equal probability. To achieve this, careful attention has been paid to the communication design, and an additional state has been introduced. The design of the tri-state election algorithm has been motivated by the requirements analysis of a major research project to deliver robust scalable distributed applications, including load sharing, in hostile computing environments in which it is common for processing nodes to be rebooted frequently without notice. The new election algorithm is based in-part on a simple 'emergent' design. The science of emergence is of great relevance to developers of distributed applications because it describes how higher-level self-regulatory behaviour can arise from many participants following a small set of simple rules. The tri-state election algorithm is shown to have very low communication complexity in which the number of messages generated remains loosely-bounded regardless of scale for large systems; is highly scalable because nodes in the idle state do not transmit any messages; and because of its self-organising characteristics, is very stable.
Resumo:
We describe a heuristic method for drawing graphs which uses a multilevel framework combined with a force-directed placement algorithm. The multilevel technique matches and coalesces pairs of adjacent vertices to define a new graph and is repeated recursively to create a hierarchy of increasingly coarse graphs, G0, G1, …, GL. The coarsest graph, GL, is then given an initial layout and the layout is refined and extended to all the graphs starting with the coarsest and ending with the original. At each successive change of level, l, the initial layout for Gl is taken from its coarser and smaller child graph, Gl+1, and refined using force-directed placement. In this way the multilevel framework both accelerates and appears to give a more global quality to the drawing. The algorithm can compute both 2 & 3 dimensional layouts and we demonstrate it on examples ranging in size from 10 to 225,000 vertices. It is also very fast and can compute a 2D layout of a sparse graph in around 12 seconds for a 10,000 vertex graph to around 5-7 minutes for the largest graphs. This is an order of magnitude faster than recent implementations of force-directed placement algorithms.
Resumo:
This paper considers a variant of the classical problem of minimizing makespan in a two-machine flow shop. In this variant, each job has three operations, where the first operation must be performed on the first machine, the second operation can be performed on either machine but cannot be preempted, and the third operation must be performed on the second machine. The NP-hard nature of the problem motivates the design and analysis of approximation algorithms. It is shown that a schedule in which the operations are sequenced arbitrarily, but without inserted machine idle time, has a worst-case performance ratio of 2. Also, an algorithm that constructs four schedules and selects the best is shown to have a worst-case performance ratio of 3/2. A polynomial time approximation scheme (PTAS) is also presented.
Resumo:
In this paper we provide a fairly complete complexity classification of various versions of the two-machine permutation flow shop scheduling problem to minimize the makespan in which some of the jobs have to be processed with no-wait in process. For some version, we offer a fully polynomial-time approximation scheme and a 43-approximation algorithm.
Resumo:
We consider a knapsack problem to minimize a symmetric quadratic function. We demonstrate that this symmetric quadratic knapsack problem is relevant to two problems of single machine scheduling: the problem of minimizing the weighted sum of the completion times with a single machine non-availability interval under the non-resumable scenario; and the problem of minimizing the total weighted earliness and tardiness with respect to a common small due date. We develop a polynomial-time approximation algorithm that delivers a constant worst-case performance ratio for a special form of the symmetric quadratic knapsack problem. We adapt that algorithm to our scheduling problems and achieve a better performance. For the problems under consideration no fixed-ratio approximation algorithms have been previously known.