859 resultados para Polymer–matrix composites
Resumo:
The thermally stimulated depolarization current (TSDC) in a range of temperature from 84 to 373 K, has been applied to study the depolarization current of polyethylene and polyethylene composites in form of film and filled with commercial or oxidative surface treatment carbon black. The diagrams of TSDC obtained show that the composite in which the carbon black had received oxidative surface treatment reducing on an average depolarization current intensity in a magnitude order if compared to the composite with commercial carbon black. Therefore in the area between α and β transitions the difference is accentuated by reaching a peak 55 times in a temperature of 240 K. The difference in results is explained in terms of molecular interactions neighboring of carbon black particles.
Resumo:
In this work, composites based on activated carbon/iron oxide (AC/Fe) were prepared in two different proportions (AC/Fe 5/1 and 1/1) and evaluated in the removal of the organic dye methylene blue (MB). Physical-chemical properties of the composites were determined by X-ray diffraction (XRD), adsorption/dessorption of N2 isotherm, temperature programmed reduction (TPR) and scanning electron microscopy (SEM). Results showed that goethite (α- FeOOH), with nanometer particle size, was formed over carbon surface for both composites. These materials showed high efficiency to remove MB from solution by combined adsorption and oxidation process. The AC/Fe 1/1 showed to be more active in (MB) oxidation then AC/Fe 5/1.
Resumo:
In this work were prepared composites of iron oxide and carbonaceous materials in two different weight proportions (Carbon/Fe 1/1 and 1/2). The physico-chemical properties of the composites were determined by temperature programmed reduction (TPR), adsorption/dessorption of N2, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and pulse titration H2. The XRD and XPS analysis showed a cubic iron oxide phase, identified as maghemite, formed over the carbon surface. The particle size of maghemite showed to be within 10-30 nm. Carbon/Fe 1/2 was the most active in MB removal kinetics and ESI-MS studies showed that MB removal by both composites leads to oxidized intermediates.
Resumo:
Titanium dioxide is an efficient photocatalist, being possible to improve its efficiency with better charge separation which occurs when it is coupled with other semiconductors. Nanometric particles of ZnO were used to impregnate TiO2 P25 in order to optimize its photocatalytic properties. ZnO/TiO2 composites were obtained at different proportions and were characterized by X-ray diffraction (XRD), micro-Raman and diffuse reflectance spectroscopies, measurement of surface area (BET) and scanning electron microscopy (SEM). Raman spectroscopy data revealed a change on the TiO2 surface due the presence of ZnO which was observed by an enlargement of TiO2 peaks and a change on the relation rate between anatase and rutile phases of the composites. The photodegradation of azo-dye Drimaren red revealed better efficiency for ZnO/TiO2 3% nanocomposite and for ZnO pure.