879 resultados para Polyacrylamide hydrogel
Resumo:
Este trabalho teve como principal objetivo produzir membranas porosas de carboximetilquitosana e hidrogéis de quitosana com propriedades físico-químicas e mecânicas adequadas para aplicações em Engenharia de Tecidos. Para isso, quitosanas com diferentes graus de acetilação (4,0%<GA<40%) e de elevada massa molar média viscosimétrica (Mv>750.000 g.mol-1) foram produzidas através da aplicação de processos consecutivos de desacetilação assistida por irradiação de ultrassom de alta intensidade (DAIUS) à beta-quitina extraída de gládios de lulas Doryteuthis spp. A carboximetilação de quitosana extensivamente desacetilada (Qs-3; GA=4%) foi realizada pela reação com ácido monocloroacético em meio isopropanol/solução aquosa de NaOH, gerando a amostra CMQs-0 (GS≈0,98; Mv≈190.000 g.mol-1). A irradiação de ultrassom de alta intensidade foi empregada para tratar solução aquosa de CMQs-0 durante 1 h e 3 h, resultando nas amostras CMQs-1 (Mv≈94.000 g.mol-1) e CMQs-3 (Mv≈43.000 g.mol-1), respectivamente. Para a produção de membranas reticuladas, genipina foi adicionada em diferentes concentrações (1,0x10-4 mol.L-1, 3,0x10-4 mol.L-1 ou 5,0x10-4 mol.L-1) às soluções aquosas das CMQs, que foram vertidas em placas de Petri e a reação de reticulação procedeu por 24 h. Em seguida, as membranas reticuladas (M-CMQs) foram liofilizadas, neutralizadas, lavadas e liofilizadas novamente, resultando em nove amostras, que foram caracterizadas quanto ao grau médio de reticulação (GR), grau médio de hidratação (GH), morfologia, propriedades mecânicas e quanto à susceptibilidade à degradação por lisozima. O grau médio de reticulação (GR) foi tanto maior quanto maior a concentração de genipina empregada na reação, variando de GR≈3,3% (M-CMQs-01) a GR≈17,8% (M-CMQs-35). As análises de MEV revelaram que as membranas reticuladas M-CMQs são estruturas porosas que apresentam maior densidade de poros aparentes quanto maiores os valores de Mve GR. Entretanto, as membranas preparadas a partir de CMQs de elevada massa molar (Mv>94.000 g.mol-1) e pouco reticuladas (GR<10%), apresentaram propriedades mecânicas superiores em termos de resistência máxima à tração (>170 kPa) e elongação máxima à ruptura (>40%). Por outro lado, as membranas mais susceptíveis à degradação enzimática foram aquelas preparadas a partir de CMQs de baixa massa molar (Mv≈43.000 g.mol-1) e que exibiram baixos graus de reticulação (GR<11%). Hidrogéis estáveis de quitosana sem o uso de qualquer agente de reticulação externo foram produzidos a partir da gelificação de soluções aquosas de quitosana com solução de NaOH ou vapor de NH3. Os hidrogéis produzidos a partir de soluções de quitosana de elevada massa molar média ponderal (Mw≈640.000 g.mol-1) e extensivamente desacetilada (DA≈2,8%) em concentrações poliméricas acima 2,0%, exibiram melhores propriedades mecânicas com o aumento da concentração polimérica, devido à formação de numerosos emaranhamentos físicos das cadeias poliméricas em solução. Os resultados mostram que as propriedades físico-químicas e mecânicas dos hidrogéis de quitosana podem ser controladas variando a concentração do polímero e o processo de gelificação. A avaliação biológica de tais hidrogéis para a regeneração de miocárdio infartado de ratos revelou que os hidrogéis de quitosana preparados a partir de soluções de polímero a 1,5% foram perfeitamente incorporados sobre a superfície do epicárdio do coração e apresentaram degradação parcial acompanhada por infiltração de células mononucleares.
Resumo:
Fundamentos: El elevado número de personas que trabajando con ordenador utiliza lentes de contacto plantea la cuestión sobre si la suma de estos dos factores de riesgo para la salud visual puede originar un agravamiento del Síndrome Visual Informático. El objetivo de esta revisión es sintetizar el conocimiento científico sobre las alteraciones oculares y visuales relacionadas con la exposición a ordenador en usuarios de lentes de contacto. Métodos: Revisión de artículos científicos (2003-2013) en español e inglés, realizando una búsqueda bibliográfica, en Medline a través de PubMed y en Scopus. Resultados: La búsqueda inicial aportó 114 trabajos, después de aplicar criterios de inclusión/exclusión se incluyeron seis artículos. Todos ellos ponen de manifiesto que las alteraciones al utilizar el ordenador son más frecuentes en las personas usuarias de lentes de contacto, con prevalencias que oscilan de 95,0% al 16,9% que en las que no utilizan lentes de contacto, cuya prevalencia va del 57,5% al 9,9% y con una probabilidad cuatro veces mayor de padecer ojo seco [OR: 4,07 (IC 95%: 3,52-4,71)]. Conclusiones: Las personas usuarias de ordenador padecen más alteraciones oculares y visuales cuando además son usuarias de lentes de contacto, pero los estudios son escasos y poco contundentes. Se precisan nuevas investigaciones que analicen la influencia según los tipos de lentes y sus condiciones de uso, tanto en la sintomatología como en la calidad de la lágrima y la superficie ocular. Las lentes de hidrogel de silicona son las que se asocian a mayor confort.
Resumo:
L’utilisation de lentilles cornéennes peut servir à améliorer le profil d’administration d’un principe actif dans les yeux. Avec une efficacité d’administration de 5% par l’utilisation de gouttes, on comprend rapidement que l’administration oculaire doit être améliorée. Cette faible administration a donné naissance à plusieurs tentatives visant à fabriquer des lentilles cornéennes médicamentées. Cependant, à cause de multiples raisons, aucune de ces tentatives n’a actuellement été mise sur le marché. Nous proposons dans cette étude, une possible amélioration des systèmes établis par le développement d’une lentille cornéenne à base de 2-(hydroxyéthyle)méthacrylate (HEMA), dans laquelle des microgels, à base de poly N-isopropylacrylamide (pNIPAM) thermosensible encapsulant un principe actif, seront incorporé. Nous avons donc débuté par développer une méthode analytique sensible par HPCL-MS/MS capable de quantifier plusieurs molécules à la fois. La méthode résultante a été validée selon les différents critères de la FDA et l’ICH en démontrant des limites de quantifications et de détections suffisamment basses, autant dans des fluides simulés que dans les tissus d’yeux de lapins. La méthode a été validée pour sept médicaments ophtalmiques : Pilocarpine, lidocaïne, proparacaïne, atropine, acétonide de triamcinolone, timolol et prednisolone. Nous avons ensuite fait la synthèse des microgels chargés négativement à base de NIPAM et d’acide méthacrylique (MAA). Nous avons encapsulé une molécule modèle dans des particules ayant une taille entre 200 et 600 nm dépendant de la composition ainsi qu’un potentiel zêta variant en fonction de la température. L’encapsulation de la rhodamine 6G (R6G) dans les microgels a été possible jusqu’à un chargement (DL%) de 38%. L’utilisation des isothermes de Langmuir a permis de montrer que l’encapsulation était principalement le résultat d’interactions électrostatiques entre les MAA et la R6G. Des cinétiques de libérations ont été effectuées à partir d’hydrogels d’acrylamide chargés en microgels encapsulant la R6G. Il a été trouvé que la libération des hydrogels chargés en microgels s’effectuait majoritairement selon l’affinité au microgel et sur une période d’environ 4-24 heures. La libération à partir de ces systèmes a été comparée à des formules d’hydrogels contenant des liposomes ou des nanogels de chitosan. Ces trois derniers (liposomes, microgels et nanogels) ont présenté des résultats prometteurs pour différentes applications avec différents profils de libérations. Enfin, nous avons transposé le modèle développé avec les gels d’acrylamide pour fabriquer des lentilles de contact de 260 à 340 µm d’épaisseur à base de pHEMA contenant les microgels avec une molécule encapsulée devant être administrée dans les yeux. Nous avons modifié la composition de l’hydrogel en incorporant un polymère linéaire, la polyvinylpyrrolidone (PVP). L’obtention d’hydrogels partiellement interpénétrés améliore la rétention d’eau dans les lentilles cornéennes. L’encapsulation dans les microgels chargés négativement a donné de meilleurs rendements avec la lidocaïne et cette dernière a été libérée de la lentille de pHEMA en totalité en approximativement 2 heures qu’elle soit ou non encapsulée dans des microgels. Ainsi dans cette étude pilote, l’impact des microgels n’a pas pu être déterminé et, de ce fait, nécessitera des études approfondies sur la structure et les propriétés de la lentille qui a été développée. En utilisant des modèles de libération plus représentatifs de la physiologie de l’œil, nous pourrions conclure avec plus de certitude concernant l’efficacité d’un tel système d’administration et s’il est possible de l’optimiser.
Resumo:
Once considered unique to the lung, surfactant proteins have been clearly identified in the intestine and peritoneum and are suggested to exist in several other organs. In the lung, surfactant proteins assist in the formation of a monolayer of surface-active phospholipid at the liquid-air interface of the alveolar lining, reducing the surface tension at this surface. In contrast, surface-active phospholipid adsorbed to articular surfaces has been identified as the load-bearing boundary lubricant of the joint. This raises the question of whether surfactant proteins in synovial fluid (SF) are required for the formation of the adsorbed layer in normal joints. Proteins from small volumes of equine SF were resolved by 1- and 2-dimensional polyacrylamide gel electrophoresis and detected by Western blotting to investigate the presence of surfactant proteins. The study showed that surfactant proteins A and D (SP-A and SP-D) are present in the SF of normal horses. We suggest that, like surface-active phospholipid, SP-A and SP-D play a significant role in the functioning of joints. Next will be clarification of the roles of surfactant proteins as disease markers in a variety of joint diseases, such as degenerative joint disease and inflammatory problems.
Resumo:
The intestinal spirochaete Brachyspira pilosicoli causes colitis in a wide variety of host species. Little is known about the structure or protein constituents of the B. pilosicoli outer membrane (OM). To identify surface-exposed proteins in this species, membrane vesicles were isolated from B. pilosicoli strain 95-1000 cells by osmotic lysis in dH(2)O followed by isopycnic centrifugation in sucrose density gradients. The membrane vesicles were separated into a high-density fraction (HDMV; p = 1.18 g CM-3) and a low-density fraction (LDMV; rho=1.12 g cm(-3)). Both fractions were free of flagella and soluble protein contamination. LDMV contained predominantly OM markers (lipo-oligosaccharide and a 29 kDa B. pilosicoli OM protein) and was used as a source of antigens to produce mAbs. Five B. pilosicoli-specific mAbs reacting with proteins with molecular masses of 23, 24, 35, 61 and 79 kDa were characterized. The 23 kDa protein was only partially soluble in Triton X-114, whereas the 24 and 35 kDa proteins were enriched in the detergent phase, implying that they were integral membrane proteins or lipoproteins. All three proteins were localized to the B. pilosicoli OM by immunogold labelling using specific mAbs. The gene encoding the abundant, surface-exposed 23 kDa protein was identified by screening a B. pilosicoli 95-1000 genome library with the mAb and was expressed in Escherichia coli. Sequence analysis showed that it encoded a unique lipoprotein, designated BmpC. Recombinant BmpC partitioned predominantly in the OM fraction of E. coli strain SOLR. The mAb to BmpC was used to screen a collection of 13 genetically heterogeneous strains of B. pilosicoli isolated from five different host species. Interestingly, only strain 95-1000 was reactive with the mAb, indicating that either the surface-exposed epitope on BmpC is variable between strains or that the protein is restricted in its distribution within B. pilosicoli.
Resumo:
To simulate the process of calcification in hydrogel implants, particularly calcification inside hydrogels, in vitro experiments using two compartment permeation cells have been performed. PHEMA hydrogel membranes were synthesized by free radical polymerization in bulk. The permeability and diffusion coefficient for Ca2+ ions at 37 &DEG; C were determined using Fick's laws of diffusion. It was evident that Ca2+ ions either from CaCl2 or SBF solutions may diffuse through PHEMA hydrogel membranes. The fort-nation of calcium phosphate deposits inside the hydrogel was observed and attributed to a heterogeneous nucleation from diffusing calcium and phosphate ions. The morphology of the deposits both on the surface and inside the hydrogels was found to be similar, i.e. spherical aggregates with a diameter of less than one micron. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The ingress of water into copolymers of 2-hydroxyethyl methacrylate (HEMA) and tetrahydrofurfuryl methacrylate (THFMA) loaded with either one of two model drugs, ie vitamin B-12 or aspirin, was studied at 310 K using three-dimensional nuclear magnetic resonance (3D NMR) imaging. The poly(HEMA) was loaded with 5 wt% of the drugs. From the imaging profiles it was observed that incorporation of vitamin B-12 into the polymers rich in HEMA resulted in crack formation at the interface between the rubbery region and the glassy core on sorption of water, although these cracks were 'healed' behind the diffusion front. However, for the copolymers with low HEMA contents and for those containing aspirin, no evidence for similar crack formation was found. For the copolymers loaded with 5 wt% of aspirin or vitamin B-12 the values of the water diffusion coefficients, determined by curve-fitting the relative water concentration profiles from magnetic resonance imaging (MRI) measurements, were found to be smaller than those obtained from a mass uptake study. (C) 2004 Society of Chemical Industry.
Resumo:
The precipitation patterns and characteristics of calcium phosphate (CaP) phases deposited on HEMA-based hydrogels upon incubation in simulated body fluid (SBF-2) containing a protein (human serum albumin) have been investigated in relation to the calcification in an organic-free medium (SBF-1) and to that occurring after subcutaneous implantation in rats. In SBF-2, the deposits occurred exclusively as a peripheral layer on the surface of the hydrogels and consisted mainly of precipitated hydroxyapatite, a species deficient in calcium and hydroxyl ions, similarly to the deposits formed on the implanted hydrogels, where the deposited layer was thicker. In SBF-1, the deposits were mainly of brushite type. There was no evidence that albumin penetrated the interstices of hydrogels. As the X-ray diffraction patterns of the CaP deposits generated in SBF-2 showed a similar nature with those formed on the implanted hydrogel, it was concluded that the calcification in SBF-2 can mimic to a reliable extent the calcification process taking place in a biological environment.
Resumo:
Venom from the Australian elapid Pseudonaja textilis (Common or Eastern Brown snake), is the second most toxic snake venom known and is the most common cause of death from snake bite in Australia. This venom is known to contain a prothrombin activator complex, serine proteinase inhibitors, various phospholipase A(2)s, and pre-and postsynaptic neurotoxins. In this study, we performed a proteomic identification of the venom using two- dimensional gel electrophoresis, mass spectrometry, and de novo peptide sequencing. We identified most of the venom proteins including proteins previously not known to be present in the venom. In addition, we used immunoblotting and post-translational modification-specific enzyme stains and antibodies that reveal the complexity and regional diversity of the venom. Modifications observed include phosphorylation, gamma-carboxylation, and glycosylation. Glycoproteins were further characterized by enzymatic deglycosylation and by lectin binding specificity. The venom contains an abundance of glycoproteins with N-linked sugars that include glucose/mannose, N-acetylgalactosamine, N-acetylglucosamine, and sialic acids. Additionally there are multiple isoforms of mammalian coagulation factors that comprise a significant proportion of the venom. Indeed two of the identified proteins, a procoagulant and a plasmin inhibitor, are currently in development as human therapeutic agents.
Resumo:
Purpose: The aim of this study was to compare a developmental optical coherence tomography (OCT) based contact lens inspection instrument to a widely used geometric inspection instrument (Optimec JCF), to establish the capability of a market focused OCT system. Methods: Measurements of 27 soft spherical contact lenses were made using the Optimec JCF and a new OCT based instrument, the Optimec is830. Twelve of the lenses analysed were specially commissioned from a traditional hydrogel (Contamac GM Advance 49%) and 12 from a silicone hydrogel (Contamac Definitive 65), each set with a range of back optic zone radius (BOZR) and centre thickness (CT) values. Three commercial lenses were also measured; CooperVision MyDay (Stenfilcon A) in −10D, −3D and +6D powers. Two measurements of BOZR, CT and total diameter were made for each lens in temperature controlled saline on both instruments. Results: The results showed that the is830 and JCF measurements were comparable, but that the is830 had a better repeatability coefficient for BOZR (0.065 mm compared to 0.151 mm) and CT (0.008 mm compared to 0.027 mm). Both instruments had similar results for total diameter (0.041 mm compared to 0.044 mm). Conclusions: The OCT based instrument assessed in this study is able to match and improve on the JCF instrument for the measurement of total diameter, back optic zone radius and centre thickness for soft contact lenses in temperature controlled saline.
Resumo:
Purpose: Meibomian-derived lipid secretions are well characterised but their subsequent fate in the ocular environment is less well understood. Phospholipids are thought to facilitate the interface between aqueous and lipid layers of the tear film and to be involved in ocular lubrication processes. We have extended our previous studies on phospholipid levels in the tear film to encompass the fate of polar and non-polar lipids in progressive accumulation and aging processes on both conventional and silicone-modified hydrogel lenses. This is an important aspect of the developing understanding of the role of lipids in the clinical performance of silicone hydrogels. Method: Several techniques were used to identify lipids in the tear film. Mass-spectrometric methods included Agilent 1100-based liquid chromatography coupled to mass spectrometry (LCMS) and Perkin Elmer gas chromatography mass spectrometry (GCMS). Thin layer chromatography (TLC) was used for separation of lipids on the basis of increasing solvent polarity. Routine assay of lipid extractions from patient-worn lenses was carried out using a Hewlett Packard 1090 liquid chromatograph coupled to both uv and Agilent 1100 fluorescence detection. A range of histological together with optical, and electron microscope techniques was used in deposit analysis. Results: Progressive lipid uptake was assessed in various ways, including: composition changes with wear time, differential lipid penetrate into the lens matrix and, particularly, the extent to which lipids become unextractable as a function of wear time. Solvent-based separation and HPLC gave consistent results indicating that the polarity of lipid classes decreased as follows: phospholipids/fatty acids > triglycerides > cholesterol/cholesteryl esters. Tear lipids were found to show autofluorescence—which underpinned the value of fluorescence microscopy and fluorescence detection coupled with HPLC separation. The most fluorescent lipids were found to be cholesteryl esters; histological techniques coupled with fluorescence microscopy indicated that white spots (’’jelly bumps’’) formed on silicone hydrogel lenses contain a high proportion of cholesteryl esters. Lipid profiles averaged for 30 symptomatic and 30 asymptomatic contact lens wearers were compiled. Peak classes were split into: cholesterol (C), cholesteryl esters (CE), glycerides (G), polar fatty acids/phospholipids (PL). The lipid ratio for ymptomatic/symptomatic was 0.6 ± 0.1 for all classes except one—the cholesterol ratio was 0.2 ± 0.05. Significantly the PL ratio was no different from that of any other class except cholesterol. Chromatography indicated that: lipid polarity decreased with depth of penetration and that lipid extractability decreased with wear time. Conclusions: Meibomian lipid composition differs from that in the tear film and on worn lenses. Although the same broad lipid classes were obtained by extraction from all lenses and all patients studied, quantities vary with wear and material. Lipid extractability diminishes with wear time regardless of the use of cleaning regimes. Dry eye symptoms in contact lens wear are frequently linked to lipid layer behaviour but seem to relate more to total lipid than to specific composition. Understanding the detail of lipid related processes is an important element of improving the clinical performance of materials and care solutions.
Resumo:
The work described in this thesis is concerned with mechanisms of contact lens lubrication. There are three major driving forces in contact lens design and development; cost, convenience, and comfort. Lubrication, as reflected in the coefficient of friction, is becoming recognised as one of the major factors affecting the comfort of the current generation of contact lenses, which have benefited from several decades of design and production improvements. This work started with the study of the in-eye release of soluble macromolecules from a contact lens matrix. The vehicle for the study was the family of CIBA Vision Focus® DAILIES® daily disposable contact lenses which is based on polyvinyl alcohol (PVA). The effective release of linear soluble PVA from DAILIES on the surface of the lens was shown to be beneficial in terms of patient comfort. There was a need to develop a novel characterisation technique in order to study these effects at surfaces; this led to the study of a novel tribological technique, which allowed the friction coefficients of different types of contact lenses to be measured reproducibly at genuinely low values. The tribometer needed the ability to accommodate the following features: (a) an approximation to eye lid load, (b) both new and ex-vivo lenses, (c) variations in substrate, (d) different ocular lubricants (including tears). The tribometer and measuring technique developed in this way was used to examine the surface friction and lubrication mechanisms of two different types of contact lenses: daily disposables and silicone hydrogels. The results from the tribometer in terms of both mean friction coefficient and the friction profiles obtained allowed various mechanisms used for surface enhancement now seen in the daily disposable contact lens sector to be evaluated. The three major methods used are: release of soluble macromolecules (such as PVA) from the lens matrix, irreversible surface binding of a macromolecule (such as polyvinyl pyrrolidone) by charge transfer and the simple polymer adsorption (e.g. Pluoronic) at the lens surface. The tribological technique was also used to examine the trends in the development of silicone hydrogel contact lenses. The focus of the principles in the design of silicone hydrogels has now shifted from oxygen permeability, to the improvement of surface properties. Presently, tribological studies reflect the most effective in vitro method of surface evaluation in relation to the in-eye comfort.
Resumo:
Purpose: Most published surface wettability data are based on hydrated materials and are dominated by the air-water interface. Water soluble species with hydrophobic domains (such as surfactants) interact directly with the hydrophobic domains in the lens polymer. Characterisation of relative polar and non-polar fractions of the dehydrated material provides an additional approach to surface analysis. Method: Probe liquids (water and diiodomethane) were used to characterise polar and dispersive components of surface energies of dehydrated lenses using the method of Owens and Wendt. A range of conventional and silicone hydrogel soft lenses was studied. The polar fraction (i.e. polar/total) of surface energy was used as a basis for the study of the structural effects that influence surfactant persistence on the lens surface. Results: When plotted against water content of the hydrated lens, polar fraction of surface energy (PFSE) values of the dehydrated lenses fell into two rectilinear bands. One of these bands covered PFSE values ranging from 0.4 to 0.8 and contained only conventional hydrogels, with two notable additions: the plasma coated silicone hydrogels lotrafilcon A and B. The second band covered PFSE values ranging from 0.04 to 0.28 and contained only silicone hydrogels. Significantly, the silicone hydrogel lenses with lowest PFSE values (p<0.15) are found to be prone to lipid deposition duringwear. Additionally, more hydrophobic surfactants were found to be more persistent on lenses with lower PFSE values. Conclusions: Measurement of polar fraction of surface energy provides an importantmechanistic insight into surface interactions of silicone hydrogels.
Resumo:
This thesis is concerned with demonstrating how the visual representation of the sequence distribution of individual monomer units, of a polymer, that would be observed upon polymerisation, may be utilised in designing and synthesizing polymers with relatively low cell adhesion characteristics, The initial part of this thesis is concerned with demonstrating the use of a computer simulation technique, in illustrating the sequence distribution that would be observed upon the polymerisation of a set of monomers. The power of the computer simulation technique has been demonstrated through the simulation of the sequence distributions of some generic contact lens materials. These generic contact lens materials were chosen simply because in the field of biomaterials their compositions are amongst the most systematically regulated and they present a wide range of compositions. The validity of the computer simulation technique has been assessed through the synthesis and analysis of linear free-radical polymers at different conversions. Two main parameters were examined, that of composition and the number-average sequence lengths of individual monomer units, at various conversions. The polymers were synthesized through the solution polymerisation process. The monomer composition was determined by elemental analysis and 13C nuclear magnetic analysis (NMR). Number-average sequence lengths were determined exclusively through 13C NMR. Although the computer simulation technique provides a visual representation of the monomer sequence distribution up to 100% conversion, these assessments were made on linear polymers at a reasonably high conversion (above 50%) but below 100% conversion of ease for analysis. The analyses proved that the computer simulation technique was reasonably accurate in predicting the sequence distribution of monomer units, upon polymerisation, in the polymer.An approach has been presented which allows one to manipulate the use of monomers, with their reactivity ratios, thereby enabling us to design polymers with controlled sequence distributions.Hydrogel membranes, with relatively controlled sequence distributions and polymerised to 100% conversion, were synthesized to represent prospective biomaterials. Cell adhesion studies were used as a biological probe to investigate the susceptibility of the surface of these membranes to cell adhesion. This was necessary in order to assess the surface biocompatibility or biotolerance of these prospective biomaterials.