919 resultados para Podsolic And Sandy Soils


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling their distribution and transfer within the soil and vegetation systems are not always well defined. Total concentrations of up to 15,195 mg center dot kg (-1) As, 6,690 mg center dot kg(-1) Cu, 24,820 mg center dot kg(-1) Pb and 9,810 mg center dot kg(-1) Zn in soils, and 62 mg center dot kg(-1) As, 1,765 mg center dot kg(-1) Cu, 280 mg center dot kg(-1) Pb and 3,460 mg center dot kg (-1) Zn in vegetation were measured. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters (maximum 2-3 km). Parent material, prevailing wind direction, and soil physical and chemical characteristics were found to correlate poorly with the restricted trace element distributions in soils. Hypotheses are given for this unusual distribution: (1) the contaminated soils were removed by erosion or (2) mines and smelters released large heavy particles that could not have been transported long distances. Analyses of the accumulation of trace elements in vegetation (median ratios: As 0.06, Cu 0.19, Pb 0.54 and Zn 1.07) and the percentage of total trace elements being DTPA extractable in soils (median percentages: As 0.06%, Cu 15%, Pb 7% and Zn 4%) indicated higher relative trace element mobility in soils with low total concentrations than in soils with elevated concentrations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Toxic trace elements present an environmental hazard in the vicinity of mining and smelting activities. However. the processes of transfer of these elements to groundwater and to plants are not always clear. Tharsis mine. in the Iberian pyrite belt (SW Spain), has been exploited since 2500 BC, with extensive smelting, taking place front the 1850S until the 1920s. Sixty four soil (mainly topsoils) and vegetation samples were collected in February 2001 and analysed by ICP-AES for 23 elements. Concentrations are 6-6300 mg kg(-1) As and 14-24800 mg kg(-1) Pb in soils, and 0.20-9 mg kg(-1) As and 2-195 mg Pb in vegetation. Trace element concentrations decrease rapidly away from the mine. with As and Pb concentrations in the range 6-1850 mg kg(-1) (median 22 mg kg(-1)) and 14-31 mg, kg(-1) (median 43 mg, kg(-1)), respectively, 1 km away from the mine. These concentrations are low when compared to other well-studied mining and smelting areas (e.g. 600 mg kg(-1) As at 8 km from Yellowknife smelter, Canada; >100 mg kg(-1) Pb over 270 km(2) around the Pb-Zn Port Pirie smelter. South Australia: mean of 1419 mg kg(-1) Pb around Aberystwyth smelter, Wales, UK). The high metal content of the vegetation and the low soil pH (mean pH 4.93) indicate the potential for trace element mobility which Could explain the relatively low concentration of metals in Tharsis topsoils and cause threats to plans to redevelop the Tharsis area as an orange plantation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lime treatment of hydrocarbon-contaminated soils offers the potential to stabilize and solidify these materials, with a consequent reduction in the risks associated with the leachate emanating from them. This can aid the disposal of contaminated soils or enable their on-site treatment. In this study, the addition of hydrated lime and quicklime significantly reduced the leaching of total petroleum hydrocarbons (TPH) from soils polluted with a 50:50 petrol/diesel mixture. Treatment with quicklime was slightly more effective, but hydrated lime may be better in the field because of its ease of handling. It is proposed that this occurs as a consequence of pozzolanic reactions retaining the hydrocarbons within the soil matrix. There was some evidence that this may be a temporary effect, as leaching increased between seven and 21 days after treatment, but the TPH concentrations in the leachate of treated soils were still one order of magnitude below those of the control soil, offering significant protection to groundwater. The reduction in leaching following treatment was observed in both aliphatic and aromatic fractions, but the latter were more affected because of their higher solubilty. The results are discussed in the context of risk assessment, and recommendations for future research are made.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent reports show that biogeochemical processes continue when the soil is frozen, but are limited by water availability. However, there is little knowledge about the interactive effects of soil and environmental variables on amounts of unfrozen water in frozen soils. The aims of this study were to determine the contributions of matric and osmotic potentials to the unfrozen water content of frozen soil. We determined the effects of matric and osmotic potential on unfrozen water contents of frozen mineral soil fractions (ranging from coarse sand to fine silt) at -7 degrees C, and estimated the contributions of these potentials to liquid water contents in samples from organic surface layers of boreal soils frozen at -4 degrees C. In the mineral soil fractions the unfrozen water contents appeared to be governed solely by the osmotic potential, but in the humus layers of the sampled boreal soils both the osmotic and matric potentials control unfrozen water content, with osmotic potential contributing 20 to 69% of the total water potential. We also determined pore size equivalents, where unfrozen water resides at -4 degrees C, and found a strong correlation between these equivalents and microbial CO2 production. The larger the pores in which the unfrozen water is found the larger the microbial activity that can be sustained. The osmotic potential may therefore be a key determinant of unfrozen water and carbon dynamics in frozen soil. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Olsen method is an indicator of plant-available phosphorus (P). The effect of time and temperature on residual phosphate in soils was measured using the Olsen method in a pot experiment. Four soils were investigated: two from Pakistan and one each from England (calcareous) and Colombia (acidic). Two levels of residual phosphate were developed in each soil after addition of phosphate by incubation at either 10degreesC or 45degreesC. The amount of phosphate added was based on the P maximum of each soil, calculated using the Langmuir equation. Rvegrass was used as the test crop. The pooled data for the four soils incubated at 10degreesC showed good correlation between Olsen P and dry matter yield or P uptake (r(2) = 0.85 and 0.77, respectively), whereas at 45 degreesC, each soil had its own relationship and pooled data did not show correlation of Olsen P with dry matter yield or P uptake. When the data at both temperatures were pooled, Olsen P was a good indicator of yield and uptake for the English soil. For the Pakistani soils, Olsen P after 45 degreesC treatment was an underestimate relative to the 10 degreesC data and for the Colombian soil it was an overestimate. The reasons for these differences need to be explored further before high temperature incubation can be used to simulate long-term changes in the field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adsorption of arsenic onto soil was investigated as a means of understanding arsenic-induced release of phosphate. In batch adsorption experiments As adsorption was accompanied by P desorption. At low As additions, the ratio As adsorbed: P desorbed remained constant. At higher As additions, P desorption reached a maximum while As adsorption continued to increase. The P desorption maximum coincided with an increase in pH. Barley plants were grown on soils spiked with arsenate (0-360 mg As kg(-1)) to investigate the effect on plant growth and P uptake. As arsenic concentration increased, above ground plant yield decreased and the plants showed symptoms typical of As toxicity and P deficiency. At low As additions to the soil, uptake of As and P by barley increased. At higher As additions P uptake decreased. It is argued that this was due to the change in As:P ratio in the soil solution. It is concluded that input of arsenic to the soil could mobilise phosphate. Crop yield is likely to be affected, either due to reduced phosphate availability at low arsenic additions or arsenic toxicity at higher additions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of protocols for the identification of metal phosphates in phosphate-treated, metal-contaminated soils is a necessary yet problematical step in the validation of remediation schemes involving immobilization of metals as phosphate phases. The potential for Raman spectroscopy to be applied to the identification of these phosphates in soils has yet to be fully explored. With this in mind, a range of synthetic mixed-metal hydroxylapatites has been characterized and added to soils at known concentrations for analysis using both bulk X-ray powder diffraction (XRD) and Raman spectroscopy. Mixed-metal hydroxylapatites in the binary series Ca-Cd, Ca-Pb, Ca-Sr and Cd-Pb synthesized in the presence of acetate and carbonate ions, were characterized using a range of analytical techniques including XRD, analytical scanning electron microscopy (SEM), infrared spectroscopy (IR), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and Raman spectroscopy. Only the Ca-Cd series displays complete solid solution, although under the synthesis conditions of this study the Cd-5(PO4)(3)OH end member could not be synthesized as a pure phase. Within the Ca-Cd series the cell parameters, IR active modes and Raman active bands vary linearly as a function of Cd content. X-ray diffraction and extended X-ray absorption fine structure spectroscopy (EXAFS) suggest that the Cd is distributed across both the Ca(1) and Ca(2) sites, even at low Cd concentrations. In order to explore the likely detection limits for mixed-metal phosphates in soils for XRD and Raman spectroscopy, soils doped with mixed-metal hydroxylapatites at concentrations of 5, 1 and 0.5 wt.% were then studied. X-ray diffraction could not confirm unambiguously the presence or identity of mixed-metal phosphates in soils at concentrations below 5 wt.%. Raman spectroscopy proved a far more sensitive method for the identification of mixed-metal hydroxylapatites in soils, which could positively identify the presence of such phases in soils at all the dopant concentrations used in this study. Moreover, Raman spectroscopy could also provide an accurate assessment of the degree of chemical substitution in the hydroxylapatites even when present in soils at concentrations as low as 0.1%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mature (clitellate) Eisenia andrei Bouche (ultra epigeic), Lumbricus rubellus Hoffmeister (epigeic), and Aporrectodea caliginosa (Savigny) (endogeic) earthworms were placed in soils treated with Pb(NO3)(2) to have concentrations in the range 1000 to 10 000 mg Pb kg(-1). After 28 days LC50(-95%confidence limit) (+95%confidence limit) values were E. andrei 5824(-361)(+898) mg Pb kg(-1), L. rubellus 2867(-193)(+145) mg Pb kg(-1) and A. caliginosa 2747(-304)(+239) mg Pb kg(-1) and EC50s for weight change were E. andrei 2841(-68)(+150) Pb kg(-1), L. rubellus 1303(-201)(+204) mg Pb kg(-1) and A. caliginosa 1208(-206)(+212) Mg Pb kg(-1). At any given soil Pb concentration, Pb tissue concentrations after 28 days were the same for all three earthworm species. In a soil avoidance test there was no difference between the behaviour of the different species. The lower sensitivity to Pb exhibited by E. andrei is most likely due to physiological adaptations associated with the modes of life of the earthworms, and could have serious implications for the use of this earthworm as the species of choice in standard toxicological testing. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Remediation of soil pollution is one of the many current environmental challenges. Anthropogenic activity has resulted in the contamination of extended areas of land, the remediation of which is both invasive and expensive by conventional means. Phytoextraction of heavy metals from contaminated soils has the prospect of being a more economic in situ alternative. In addition, phytoextraction targets ecotoxicologically the most relevant soil fraction of these metals, i.e. the bioavailable fraction. Greenhouse experiments were carried out to evaluate the potential of four high biomass crop species in their potential for phytoextraction of heavy metals, with or without with the use of soil amendments (EDTA or EDDS). A calcareous dredged sediment derived surface soil, with high organic matter and clay content and moderate levels of heavy metal pollution, was used in the experiments. No growth depression was observed in EDTA or EDDS treated pots in comparison to untreated controls. Metal accumulation was considered to be low for phytoextraction purposes, despite the use of chelating agents. The low observed shoot concentrations of heavy metals were attributed to the low phytoavailability of heavy metals in this particular soil substrate. The mobilising effects induced by EDTA in the soil were found to be too long-lived for application as a soil amendment in phytoextraction. Although EDDS was found to be more biodegradable, higher effect half lives were observed than reported in literature or observed in previous experiments. These findings caution against the use of any amendment, biodegradable or otherwise, without proper investigation of its effects and the longevity thereof. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The soil-plant transfer factors for Cs and Sr were analyzed in relationship to soil properties, crops, and varieties of crops. Two crops and two varieties of each crop: lettuce (Lactuca sativa L.), cv. Salad Bowl Green and cv. Lobjoits Green Cos, and radish (Raphanus sativus L.), cv. French Breakfast 3 and cv. Scarlet Globe, were grown on five different soils amended with Cs and Sr to give concentrations of 1 mg kg(-1) and 50 mg kg(-1) of each element. Soil-plant transfer coefficients ranged between 0.12-19.10 (Cs) and 1.48-146.10 (Sr) for lettuce and 0.09-13.24 (Cs) and 2.99-93.00 (Sr) for radish. Uptake of Cs and Sr by plants depended on both plant and soil properties. There were significant (P less than or equal to 0.05) differences between soil-plant transfer factors for each plant type at the two soil concentrations. At each soil concentration about 60% of the variance in the uptake of the Cs and Sr was due to soil properties. For a given concentration of Cs or Sr in soil, the most important factor effecting soil-plant transfer of these elements was the soil properties rather than the crops or varieties of crops. Therefore, for the varieties considered here, soil-plant transfer of Cs and Sr would be best regulated through the management of soil properties. At each concentration of Cs and Sr, the main soil properties effecting the uptake of Cs and Sr by lettuce and radish were the concentrations of K and Ca, pH and CEC. Together with the concentrations of contaminants in soils, they explained about 80% of total data variance, and were the best predictors for soil-plant transfer. The different varieties of lettuce and radish gave different responses in soil-plant transfer of Cs and Sr in different soil conditions, i.e. genotype x environment interaction caused about 30% of the variability in the uptake of Cs and Sr by plants. This means that a plant variety with a low soil-plant transfer of Cs and Sr in one soil could have an increased soil-plant transfer factor in other soils. The broad implications of this work are that in contaminated agricultural lands still used for plant growing, contaminant-excluding crop varieties may not be a reliable method for decreasing contaminant transfer to foodstuffs. Modification of soil properties would be a more reliable technique. This is particularly relevant to agricultural soils in the former USSR still affected by fallout from the Chernobyl disaster.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An inventory of heavy metal inputs (Zn, Cu, Ni, Pb, Cd, Cr, As and Hg) to agricultural soils in England and Wales in 2000 is presented, accounting for major sources including atmospheric deposition, sewage sludge, livestock manures, inorganic fertilisers and lime, agrochemicals, irrigation water, industrial by-product 'wastes' and composts. Across the whole agricultural land area, atmospheric deposition was the main source of most metals, ranging from 25 to 85% of total inputs. Livestock manures and sewage sludge were also important sources, responsible for an estimated 37-40 and 8-17% of total Zn and Cu inputs, respectively. However, at the individual field scale sewage sludge, livestock manures and industrial wastes could be the major source of many metals where these materials are applied. This work will assist in developing strategies for reducing heavy metal inputs to agricultural land and effectively targeting policies to protect soils from long-term heavy metal accumulation. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Soils that receive large applications of animal wastes and sewage sludge are vulnerable to releasing environmentally significant concentrations of dissolved P available to subsurface flow owing to the gradual saturation of the soil's P sorption capacity. This study evaluated P sorption (calculated from Langmuir isotherms) and availability of P (as CaCl2-P and resin P) in soils incubated for 20 d with poultry litter, poultry manure, cattle slurry, municipal sewage sludge, or KH2PO4, added on a P-equivalent basis (100 mg P kg(-1)). All the P sources had a marked negative effect on P sorption and a positive effect on P availability in all soils. In the cattle slurry- and KH2PO4- treated soils, the decreases in P sorption maximum (19-66%) and binding energy (25-89%) were consistently larger than the corresponding decreases (7-41% and 11-30%) in poultry litter-, poultry manure-, and sewage sludge-treated soils. The effects of cattle slurry and KH2PO4 on P availability were, in most cases, larger than those of the other P sources. In the poultry litter, poultry manure, and sewage sludge treatments, the increase in soil solution P was inversely related (R-2 = 0.75) to the input of Ca from these relatively high Ca (13.5-42 g kg(-1)) sources. Correlation analyses implied that the magnitude of the changes in P sorption and availability was not related to the water-extractable P content of the P sources. Future research on the sustainable application of organic wastes to agricultural soils needs to consider the non-P- as well as P-containing components of the waste.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Excessive levels of P in agricultural soils pose a threat to local water quality. This study evaluated (i) time-dependent changes in soil P sorption (expressed as a phosphorus sorption index, PSI) and P availability (as resin P) during incubation (100 d) with poultry litter, cattle slurry, sewage sludge, or KH2PO4, added on a P-equivalent basis (100 mg P kg(-1)), and (ii) the subsequent kinetics of P release, measured by repeated extractions with a mixed cation-anion exchange resin. Soil exchangeable Ca and ammonium oxalate-extractable Fe and Al were also determined at 100 d of incubation. The small decrease in P sorption in the litter and sludge treatments (25%), compared with that in the slurry and KH2PO4 treatments (52%) between 20 and 100 d of incubation was attributed partly to the formation of new adsorption sites for P. Subsequent P release was described by a power equation: Resin P = a(extraction number)(b), where the constants a and b represent resin P obtained with a single extraction and the rate of P release per resin extraction, respectively. On average, the rate of P release decreased in the order: KH2PO4 and slurry > litter > sludge, and was inversely related to exchangeable Ca content of the incubated soils (R-2 = 0.57). The slower rates of P release in the litter and sludge treatments (P < 0.001) are attributed to the large values for exchangeable Ca (1050-2640 and 1070-2710 mg kg(-1), respectively) in these amended soils. Future research concerned with short-term declines in environmentally harmful levels of P in recently amended soils should consider the differential effects of the amendments on soil P dynamics.