900 resultados para Plasmonic devices
Resumo:
Incumbent telecommunication lasers emitting at 1.5 µm are fabricated on InP substrates and consist of multiple strained quantum well layers of the ternary alloy InGaAs, with barriers of InGaAsP or InGaAlAs. These lasers have been seen to exhibit very strong temperature dependence of the threshold current. This strong temperature dependence leads to a situation where external cooling equipment is required to stabilise the optical output power of these lasers. This results in a significant increase in the energy bill associated with telecommunications, as well as a large increase in equipment budgets. If the exponential growth trend of end user bandwidth demand associated with the internet continues, these inefficient lasers could see the telecommunications industry become the dominant consumer of world energy. For this reason there is strong interest in developing new, much more efficient telecommunication lasers. One avenue being investigated is the development of quantum dot lasers on InP. The confinement experienced in these low dimensional structures leads to a strong perturbation of the density of states at the band edge, and has been predicted to result in reduced temperature dependence of the threshold current in these devices. The growth of these structures is difficult due to the large lattice mismatch between InP and InAs; however, recently quantum dots elongated in one dimension, known as quantum dashes, have been demonstrated. Chapter 4 of this thesis provides an experimental analysis of one of these quantum dash lasers emitting at 1.5 µm along with a numerical investigation of threshold dynamics present in this device. Another avenue being explored to increase the efficiency of telecommunications lasers is bandstructure engineering of GaAs-based materials to emit at 1.5 µm. The cause of the strong temperature sensitivity in InP-based quantum well structures has been shown to be CHSH Auger recombination. Calculations have shown and experiments have verified that the addition of bismuth to GaAs strongly reduces the bandgap and increases the spin orbit splitting energy of the alloy GaAs1−xBix. This leads to a bandstructure condition at x = 10 % where not only is 1.5 µm emission achieved on GaAs-based material, but also the bandstructure of the material can naturally suppress the costly CHSH Auger recombination which plagues InP-based quantum-well-based material. It has been predicted that telecommunications lasers based on this material system should operate in the absence of external cooling equipment and offer electrical and optical benefits over the incumbent lasers. Chapters 5, 6, and 7 provide a first analysis of several aspects of this material system relevant to the development of high bismuth content telecommunication lasers.
Resumo:
© 2016, Springer-Verlag Berlin Heidelberg.Nanoparticles are being explored in many different applications due to the unique properties offered by quantum effects. To broaden the scope of these applications, the deposition of nanoparticles onto substrates in a simple and controlled way is highly desired. In this study, we use resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) for the deposition of metallic, silver nanoparticles for plasmonic applications. We find that RIR-MAPLE, a simple and versatile approach, is able to deposit silver nanoparticles as large as 80 nm onto different substrates with good adhesion, regardless of substrate properties. In addition, the nanoparticle surface coverage of the substrates, which result from the random distribution of nanoparticles across the substrate per laser pulse, can be simply and precisely controlled by RIR-MAPLE. Polymer films of poly(3-hexylthiophene-2,5-diyl) (P3HT) are also deposited by RIR-MAPLE on top of the deposited silver nanoparticles in order to demonstrate enhanced absorption due to the localized surface plasmon resonance effect. The reported features of RIR-MAPLE nanoparticle deposition indicate that this tool can enable efficient processing of nanoparticle thin films for applications that require specific substrates or configurations that are not easily achieved using solution-based approaches.
Resumo:
Recent advances in nanotechnology have led to the application of nanoparticles in a wide variety of fields. In the field of nanomedicine, there is great emphasis on combining diagnostic and therapeutic modalities into a single nanoparticle construct (theranostics). In particular, anisotropic nanoparticles have shown great potential for surface-enhanced Raman scattering (SERS) detection due to their unique optical properties. Gold nanostars are a type of anisotropic nanoparticle with one of the highest SERS enhancement factors in a non-aggregated state. By utilizing the distinct characteristics of gold nanostars, new plasmonic materials for diagnostics, therapy, and sensing can be synthesized. The work described herein is divided into two main themes. The first half presents a novel, theranostic nanoplatform that can be used for both SERS detection and photodynamic therapy (PDT). The second half involves the rational design of silver-coated gold nanostars for increasing SERS signal intensity and improving reproducibility and quantification in SERS measurements.
The theranostic nanoplatforms consist of Raman-labeled gold nanostars coated with a silica shell. Photosensitizer molecules for PDT can be loaded into the silica matrix, while retaining the SERS signal of the gold nanostar core. SERS detection and PDT are performed at different wavelengths, so there is no interference between the diagnostic and therapeutic modalities. Singlet oxygen generation (a measure of PDT effectiveness) was demonstrated from the drug-loaded nanocomposites. In vitro testing with breast cancer cells showed that the nanoplatform could be successfully used for PDT. When further conjugating the nanoplatform with a cell-penetrating peptide (CPP), efficacy of both SERS detection and PDT is enhanced.
The rational design of plasmonic nanoparticles for SERS sensing involved the synthesis of silver-coated gold nanostars. Investigation of the silver coating process revealed that preservation of the gold nanostar tips was necessary to achieve the increased SERS intensity. At the optimal amount of silver coating, the SERS intensity is increased by over an order of magnitude. It was determined that a majority of the increased SERS signal can be attributed to reducing the inner filter effect, as the silver coating process moves the extinction of the particles far away from the laser excitation line. To improve reproducibility and quantitative SERS detection, an internal standard was incorporated into the particles. By embedding a small-molecule dye between the gold and silver surfaces, SERS signal was obtained both from the internal dye and external analyte on the particle surface. By normalizing the external analyte signal to the internal reference signal, reproducibility and quantitative analysis are improved in a variety of experimental conditions.
Resumo:
The coupling of mechanical stress fields in polymers to covalent chemistry (polymer mechanochemistry) has provided access to previously unattainable chemical reactions and polymer transformations. In the bulk, mechanochemical activation has been used as the basis for new classes of stress-responsive polymers that demonstrate stress/strain sensing, shear-induced intermolecular reactivity for molecular level remodeling and self-strengthening, and the release of acids and other small molecules that are potentially capable of triggering further chemical response. The potential utility of polymer mechanochemistry in functional materials is limited, however, by the fact that to date, all reported covalent activation in the bulk occurs in concert with plastic yield and deformation, so that the structure of the activated object is vastly different from its nascent form. Mechanochemically activated materials have thus been limited to “single use” demonstrations, rather than as multi-functional materials for structural and/or device applications. Here, we report that filled polydimethylsiloxane (PDMS) elastomers provide a robust elastic substrate into which mechanophores can be embedded and activated under conditions from which the sample regains its original shape and properties. Fabrication is straightforward and easily accessible, providing access for the first time to objects and devices that either release or reversibly activate chemical functionality over hundreds of loading cycles.
While the mechanically accelerated ring-opening reaction of spiropyran to merocyanine and associated color change provides a useful method by which to image the molecular scale stress/strain distribution within a polymer, the magnitude of the forces necessary for activation had yet to be quantified. Here, we report single molecule force spectroscopy studies of two spiropyran isomers. Ring opening on the timescale of tens of milliseconds is found to require forces of ~240 pN, well below that of previously characterized covalent mechanophores. The lower threshold force is a combination of a low force-free activation energy and the fact that the change in rate with force (activation length) of each isomer is greater than that inferred in other systems. Importantly, quantifying the magnitude of forces required to activate individual spiropyran-based force-probes enables the probe behave as a “scout” of molecular forces in materials; the observed behavior of which can be extrapolated to predict the reactivity of potential mechanophores within a given material and deformation.
We subsequently translated the design platform to existing dynamic soft technologies to fabricate the first mechanochemically responsive devices; first, by remotely inducing dielectric patterning of an elastic substrate to produce assorted fluorescent patterns in concert with topological changes; and second, by adopting a soft robotic platform to produce a color change from the strains inherent to pneumatically actuated robotic motion. Shown herein, covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation into value-added, constructive covalent chemical responses. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional actuating device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the actuator in a way that might also be coupled to feedback loops that allow autonomous, self-regulation of activity.
In the future, both the specific material and the general approach should be useful in enriching the responsive functionality of soft elastomeric materials and devices. We anticipate the development of new mechanophores that, like the materials, are reversibly and repeatedly activated, expanding the capabilities of soft, active devices and further permitting dynamic control over chemical reactivity that is otherwise inaccessible, each in response to a single remote signal.
Resumo:
The goal of this research is to produce a system for powering medical implants to increase the lifetime of the implanted devices and reduce the battery size. The system consists of a number of elements – the piezoelectric material for generating power, the device design, the circuit for rectification and energy storage. The piezoelectric material is analysed and a process for producing a repeatable high quality piezoelectric material is described. A full width half maximum (FWHM) of the rocking curve X-Ray diffraction (XRD) scan of between ~1.5° to ~1.7° for test wafers was achieved. This is state of the art for AlN on silicon and means devices with good piezoelectric constants can be fabricated. Finite element modelling FEM) was used to design the structures for energy harvesting. The models developed in this work were established to have an accuracy better than 5% in terms of the difference between measured and modelled results. Devices made from this material were analysed for power harvesting ability as well as the effect that they have on the flow of liquid which is an important consideration for implantable devices. The FEM results are compared to experimental results from laser Doppler vibrometry (LDV), magnetic shaker and perfusion machine tests. The rectifying circuitry for the energy harvester was also investigated. The final solution uses multiple devices to provide the power to augment the battery and so this was a key feature to be considered. Many circuits were examined and a solution based on a fully autonomous circuit was advanced. This circuit was analysed for use with multiple low power inputs similar to the results from previous investigations into the energy harvesting devices. Polymer materials were also studied for use as a substitute for the piezoelectric material as well as the substrate because silicon is more brittle.
Resumo:
Germanium was of great interest in the 1950’s when it was used for the first transistor device. However, due to the water soluble and unstable oxide it was surpassed by silicon. Today, as device dimensions are shrinking the silicon oxide is no longer suitable due to gate leakage and other low-κ dielectrics such as Al2O3 and HfO2 are being used. Germanium (Ge) is a promising material to replace or integrate with silicon (Si) to continue the trend of Moore’s law. Germanium has better intrinsic mobilities than silicon and is also silicon fab compatible so it would be an ideal material choice to integrate into silicon-based technologies. The progression towards nanoelectronics requires a lot of in depth studies. Dynamic TEM studies allow observations of reactions to allow a better understanding of mechanisms and how an external stimulus may affect a material/structure. This thesis details in situ TEM experiments to investigate some essential processes for germanium nanowire (NW) integration into nanoelectronic devices; i.e. doping and Ohmic contact formation. Chapter 1 reviews recent advances in dynamic TEM studies on semiconductor (namely silicon and germanium) nanostructures. The areas included are nanowire/crystal growth, germanide/silicide formation, irradiation, electrical biasing, batteries and strain. Chapter 2 details the study of ion irradiation and the damage incurred in germanium nanowires. An experimental set-up is described to allow for concurrent observation in the TEM of a nanowire following sequential ion implantation steps. Grown nanowires were deposited on a FIB labelled SiN membrane grid which facilitated HRTEM imaging and facile navigation to a specific nanowire. Cross sections of irradiated nanowires were also performed to evaluate the damage across the nanowire diameter. Experiments were conducted at 30 kV and 5 kV ion energies to study the effect of beam energy on nanowires of varied diameters. The results on nanowires were also compared to the damage profile in bulk germanium with both 30 kV and 5 kV ion beam energies. Chapter 3 extends the work from chapter 2 whereby nanowires are annealed post ion irradiation. In situ thermal annealing experiments were conducted to observe the recrystallization of the nanowires. A method to promote solid phase epitaxial growth is investigated by irradiating only small areas of a nanowire to maintain a seed from which the epitaxial growth can initiate. It was also found that strain in the nanowire greatly effects defect formation and random nucleation and growth. To obtain full recovery of the crystal structure of a nanowire, a stable support which reduces strain in the nanowire is essential as well as containing a seed from which solid phase epitaxial growth can initiate. Chapter 4 details the study of nickel germanide formation in germanium nanostructures. Rows of EBL (electron beam lithography) defined Ni-capped germanium nanopillars were extracted in FIB cross sections and annealed in situ to observe the germanide formation. Chapter 5 summarizes the key conclusions of each chapter and discusses an outlook on the future of germanium nanowire studies to facilitate their future incorporation into nanodevices.
Resumo:
This paper presents an investigation on air compressibility in the air chamber and its effects on the power conversion of oscillating water column (OWC) devices. As it is well known that for practical OWC plants, their air chambers may be large enough for accommodating significant air compressibility, the “spring effect,” an effect that is frequently and simply regarded to store and release energy during the reciprocating process of a wave cycle. Its insight effects on the device’s performance and power conversion, however, have not been studied in detail. This research will investigate the phenomena with a special focus on the effects of air compressibility on wave energy conversion. Air compressibility itself is a complicated nonlinear process in nature, but it can be linearised for numerical simulations under certain assumptions for frequency domain analysis. In this research work, air compressibility in the OWC devices is first linearised and further coupled with the hydrodynamics of the OWC. It is able to show mathematically that in frequency-domain, air compressibility can increase the spring coefficients of both the water body motion and the device motion (if it is a floating device), and enhance the coupling effects between the water body and the structure. Corresponding to these changes, the OWC performance, the capture power, and the optimised Power Take-off (PTO) damping coefficient in the wave energy conversion can be all modified due to air compressibility. To validate the frequency-domain results and understand the problems better, the more accurate time-domain simulations with fewer assumptions have been used for comparison. It is shown that air compressibility may significantly change the dynamic responses and the capacity of converting wave energy of the OWC devices if the air chamber is very large.
Resumo:
A low-threshold nanolaser with all three dimensions at the subwavelength scale is proposed and investigated. The nanolaser is constructed based on an asymmetric hybrid plasmonic F-P cavity with Ag-coated end facets. Lasing characteristics are calculated using finite element method at the wavelength of 1550 nm. The results show that owing to the low modal loss, large modal confinement factor of the asymmetric plasmonic cavity structure, in conjunction with the high reflectivity of the Ag reflectors, a minimum threshold gain of 240 cm−1 is predicted. Furthermore, the Purcell factor as large as 2518 is obtained with optimized structure parameters to enhance rates of spontaneous and stimulated emission.
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1303/thumbnail.jpg
Resumo:
As the concept of renewable energy becomes increasingly important in the modern society, a considerable amount of research has been conducted in the field of organic photovoltaics in recent years. Although organic solar cells generally have had lower efficiencies compared to silicon solar cells, they have the potential to be mass produced via solution processing. A common polymer solar cell architecture relies on the usage of P3HT (electron donor) and PCBM (electron acceptor) bulk heterojunction. One of the main issues with this configuration is that in order to compensate for the high exciton recombination rate, the photoactive layer is often made very thin (on the order of 100 $%). This results in low solar cell photocurrents due to low absorption. This thesis investigates a novel method of light trapping by coupling surface plasmons at the electrode interface via surface relief gratings, leading to EM field enhancements and increased photo absorption. Experimental work was first conducted on developing and optimizing a transparent electrode of the form &'()/+,/&'() to replace the traditional ITO electrode since the azopolymer gratings cannot withstand the high temperature processing of ITO films. It was determined that given the right thickness profiles and deposition conditions, the MAM stack can achieve transmittance and conductivity similar to ITO films. Experimental work was also conducted on the fabrication and characterization of surface relief gratings, as well as verification of the surface plasmon generation. Surface relief gratings were fabricated easily and accurately via laser interference lithography on photosensitive azopolymer films. Laser diffraction studies confirmed the grating pitch, which is dependent on the incident angle and wavelength of the writing beam. AFM experiments were conducted to determine the surface morphology of the gratings, before and after metallic film deposition. It was concluded that metallic film deposition does not significantly alter the grating morphologies.
Resumo:
As the concept of renewable energy becomes increasingly important in the modern society, a considerable amount of research has been conducted in the field of organic photovoltaics in recent years. Although organic solar cells generally have had lower efficiencies compared to silicon solar cells, they have the potential to be mass produced via solution processing. A common polymer solar cell architecture relies on the usage of P3HT (electron donor) and PCBM (electron acceptor) bulk heterojunction. One of the main issues with this configuration is that in order to compensate for the high exciton recombination rate, the photoactive layer is often made very thin (on the order of 100 $%). This results in low solar cell photocurrents due to low absorption. This thesis investigates a novel method of light trapping by coupling surface plasmons at the electrode interface via surface relief gratings, leading to EM field enhancements and increased photo absorption. Experimental work was first conducted on developing and optimizing a transparent electrode of the form &'()/+,/&'() to replace the traditional ITO electrode since the azopolymer gratings cannot withstand the high temperature processing of ITO films. It was determined that given the right thickness profiles and deposition conditions, the MAM stack can achieve transmittance and conductivity similar to ITO films. Experimental work was also conducted on the fabrication and characterization of surface relief gratings, as well as verification of the surface plasmon generation. Surface relief gratings were fabricated easily and accurately via laser interference lithography on photosensitive azopolymer films. Laser diffraction studies confirmed the grating pitch, which is dependent on the incident angle and wavelength of the writing beam. AFM experiments were conducted to determine the surface morphology of the gratings, before and after metallic film deposition. It was concluded that metallic film deposition does not significantly alter the grating morphologies.
Resumo:
The purpose of this research is to investigate potential methods to produce an ion-exchange membrane that can be integrated directly into a polydimethylsiloxane Lab-on-a-Chip or Micro-Total-Analysis-System. The majority of microfluidic membranes are based on creating microporous structures, because it allows flexibility in the choice of material such that it can match the material of the microfluidic chip. This cohesion between the material of the microfluidic chip and membrane is an important feature to prevent bonding difficulties which can lead to leaking and other practical problems. However, of the materials commonly used to manufacture microfluidic chips, there are none that provide the ion-exchange capability. The DuPont product Nafion{TM} is chosen as the ion-exchange membrane, a copolymer with high conductivity and selectivity to cations and suitable for many applications such as electrolysis of water and the chlor-alkali process. The use of such an ion-exchange membrane in microfluidics could have multiple advantages, but there is no reversible/irreversible bonding that occurs between PDMS and Nafion{TM}. In this project multiple methods of physical entrapment of the ion-exchange material inside a film of PDMS are attempted. Through the use of the inherent properties of PDMS, very inexpensive sugar granulate can be used to make an inexpensive membrane mould which does not interfere with the PDMS crosslinking process. After dissolving away this sacrificial mould material, Nafion{TM} is solidified in the irregular granulate holes. Nafion{TM} in this membrane is confined in the irregular shape of the PDMS openings. The outer structure of the membrane is all PDMS and can be attached easily and securely to any PDMS-based microfluidic device through reversible or irreversible PDMS/PDMS bonding. Through impedance measurement, the effectiveness of these integrated membranes are compared against plain Nafion{TM} films in simple sodium chloride solutions.
Resumo:
Several studies in the past have revealed that network end user devices are left powered up 24/7 even when idle just for the sake of maintaining Internet connectivity. Network devices normally support low power states but are kept inactive due to their inability to maintain network connectivity. The Network Connectivity Proxy (NCP) has recently been proposed as an effective mechanism to impersonate network connectivity on behalf of high power devices and enable them to sleep when idle without losing network presence. The NCP can efficiently proxy basic networking protocol, however, proxying of Internet based applications have no absolute solution due to dynamic and non-predictable nature of the packets they are sending and receiving periodically. This paper proposes an approach for proxying Internet based applications and presents the basic software architectures and capabilities. Further, this paper also practically evaluates the proposed framework and analyzes expected energy savings achievable under-different realistic conditions.