965 resultados para Plant resistande to insects
Trait-mediated effects on flowers: Artificial spiders deceive pollinators and decrease plant fitness
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The seasonal density fluctuation, phenology and sex ratio of Peucetia flava (Oxyopidae) on Rhyncanthera dichotoma (Melastomataceae) were investigated during a year in a swamp in southeastern Brazil. Peucetia flava displayed an unusual non-seasonal life cycle and the population size varied little over the year. The density of Peucetia spiders increased with the increase in abundance of leaves and number of arthropods adhered to glandular trichomes on R. dichotoma leaves. Our findings suggest that seasonal density fluctuation of Peucetia may be influenced by foraging site availability (i.e. leaves) and prey supply (i.e. arthropods adhering to glandular trichomes). The unusual seasonal stability of P. flava may be related to the type of habitat in which this spider occurs (swamp), because of the constant input of allochthonous resources from the water source, i.e. aquatic insects that migrate to the terrestrial environment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Photodegradation of the pharmaceuticals amoxicillin (AMX), bezafibrate (BZF) and paracetamol (PCT) in aqueous solutions via the photo-Fenton process was investigated under black-light and solar irradiation. The influences of iron source, initial H2O2 concentration and matrix (distilled water and sewage treatment plant effluent) on degradation efficiency were discussed in detail. The results showed that (i) the degradation of the drugs was favored in the presence of potassium ferrioxalate (FeOx) in comparison to Fe(NO3)(3): (ii) the increase of the H2O2 concentration improved the efficiency of AMX and BZF oxidation; however, the same was not observed for PCT: (iii) the influence of the matrix was observed for the degradation of BZF and PCT: (iv) under solar irradiation, the oxidation of the BZF and PCT is faster than under black-light irradiation. All these pharmaceuticals can be efficiently degraded employing the process evaluated. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An experiment was conducted to study nitrogen absorption and translocation in grain sorghum plants during their reproductive growth. Sorghum was grown in four row spacings: 50 and 70 cm in single rows, 80 and 120 cm in double rows 20 cm apart. Plant populations were 71000, 142000 and 213000 plants/ha. After flowering, samples were taken at 12 day intervals, and the plants were divided into grains and stover, where N was analyzed. There was an increase in N concentration in lower plant populations and in wider row spacings. However, total nitrogen accumulation (in kg/ha) increased as the number of plants was increased. In the vegetative parts of the plants there were higher N concentrations in lower populations showing that there was a higher N absorption and a lower translocation to the grains. When grain sorghum was grown in 50 cm rows, there was a high N accumulation, a high N translocation to the grains and the highest yield. This row spacing led to the highest N use efficiency.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
PLANT-TO-SEED TRANSMISSION of CURTOBACTERIUM FLACCUMFACIENS pv. FLACCUMACIENS IN A DRY BEAN CULTIVAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1. Although several species of Peucetia (Oxyopidae) live strictly in association with plants bearing glandular trichomes worldwide, to date little is known about whether these associations are mutualistic.2. In this study we manipulated the presence of Peucetia flava on the glandular plant Rhynchanthera dichotoma in the rainy and post-rain season, to test the strength of its effects on leaf, bud, and flower damage and plant reproductive output. In addition, we ran independent field experiments to examine whether these sticky structures improve spider fidelity to plants.3. Peucetia suppressed some species of foliar phytophages, but not others. Although spiders have reduced levels of leaf herbivory, this phenomenon was temporally conditional, i.e. occurred only in the post-rain but not in the rainy season. Floral herbivory was also reduced in the presence of spiders, but these predators did not affect plant fitness components.4. Plants that had their glandular trichomes removed retained fewer insects than those bearing such structures. Spiders remained longer on plants with glandular trichomes than on plants in which these structures had been removed. Isotopic analyses showed that spiders that fed on live and dead labelled flies adhered to the glandular hairs in similar proportions.5. Spiders incurred no costs to the plants, but can potentially increase individual plant fitness by reducing damage to reproductive tissues. Temporal conditionality probably occurred because plant productivity exceeded herbivore consumption, thus dampening top-down effects. Specialisation to live on glandular plants may have favoured scavenging behaviour in Peucetia, possibly an adaptation to periods of food scarcity.
Resumo:
The plant cell wall is composed mainly of polysaccharides some constituted of repeating units of a single sugar, as cellulose or by two or more sugars grouped in repeating oligosaccharide blocks as the galactomannans and xyloglucans. Variations in composition and fine structure of these cell wall polysaccharides have been used as taxonomic markers and in the comprehension of the evolutive process, particularly in the Leguminosae. Partial hydrolysis of these compounds give rise to oligomers, some of which are capable of eliciting the synthesis of defensive substances in plants named phytoalexins. Species which differ in respect to phytoalexin liberation also differ in cell wall composition, particularly in the pectic fraction of the wall. Pectinases (mainly endopolygalacturonases) present in fungi, have been shown to hydrolyze plant cell walls yielding phytoalexin-eliciting oligosaccharides which differ in composition and in eliciting capacity in different species. These differences can be associated with the capacity of a given species to produce phytoalexins. On the other hand, the phytoalexin induction in plants is being used as a method of producing novel bioactive secondary metabolites.
Resumo:
The development of Leucoagaricus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens was inhibited in vitro by synthetic compounds containing the piperonyl group. In addition, worker ants that were fed daily on an artificial diet to which these compounds were added had a higher mortality rate than the controls. The inhibition of the fungal growth increased with the size of the carbon side chain ranging from C1 through C8 and decreasing thereafter. 1-(3,4-Methylenedioxybenzyloxy)octane (compound 5) was the most active compound and inhibited the fungal development by 80% at a concentration of 15 μg m1-1. With worker ants the toxic effects started with compound 5 and increased with the number of carbons in the side chain. Thus, for the same concentration (100 μg m1-1) the mortality rates observed after 8 days of diet ingestion were 82%, 66% and 42%, for 1-(3,4-methylenedioxybenzyloxy)decane, 1-(3,4-methylenedioxybenzyloxy)dodecane and compound 5, respectively, whereas with commercial piperonyl butoxide the mortality was 68%. The latter compound, which is known as a synergist insecticide, was as inhibitory to the symbiotic fungus as the synthetic compound 5. The possibility of controlling these insects in the future using compounds that can target simultaneously both organisms is discussed. © 2001 Society of Chemical Industry.
Resumo:
Xylella fastidiosa, a xylem-limited bacterium, causes several economically important diseases in North, Central, and South America. These diseases are transmitted by sharpshooter insects, contaminated budwood, and natural root-grafts. X. fastidiosa extensively colonizes the xylem vessels of susceptible plants. Citrus fruit have a well-developed vascular system, which is continuous with the vascular system of the plant. Citrus seeds develop very prominent vascular bundles, which are attached through ovular and seed bundles to the xylem system of the fruit. Sweet orange (Citrus sinensis) fruit of cvs. Pera, Natal, and Valencia with characteristic symptoms of citrus variegated chlorosis disease were collected for analysis. X. fastidiosa was detected by polymerase chain reaction (PCR) in all main fruit vascular bundles, as well as in the seed and in dissected seed parts. No visual abnormalities were observed in seeds infected with the bacterium. However, the embryos of the infected seeds weighed 25% less than those of healthy seeds, and their germination rate was lower than uninfected seeds. There were about 2,500 cells of X. fastidiosa per infected seed of sweet orange, as quantified using real-time PCR techniques. The identification of X. fastidiosa in the infected seeds was confirmed by cloning and sequencing the specific amplification product, obtained by standard PCR with specific primers. X. fastidiosa was also detected in and recovered from seedlings by isolation in vitro. Our results show that X. fastidiosa can infect and colonize fruit tissues including the seed. We also have shown that X. fastidiosa can be transmitted from seeds to seedlings of sweet orange. To our knowledge, this is the first report of the presence of X. fastidiosa in seeds and its transmission to seedlings.
Resumo:
Crude extracts from roots, stems, branches, fruits and leaves of Cedrela fissilis were tested to verify their toxicity to Atta sexdens rubropilosa workers and to their symbiotic fungus Leucoagaricus gongylophorus. The workers that were fed daily on an artificial diet to which crude extracts from this plant were added had a higher mortality rate than the controls, especially for the hexane, dichloromethane and methanol crude extracts from roots (RH, RD and RM) and from leaves (LH, LD and LM). Fungal growth was inhibited by the hexane (RH) and dichloromethane crude extract from roots (RD). The RH, RD and FD crude extracts were fractioned and their fractions were tested. All the fractions tested presented toxicity to the ants and some fractions (RH-H, RH-D, RD-4 and RD-5) completely inhibited fungus development. The possibility of controlling these insects in the future using Cedrela fissilis compounds that can simultaneously target both organisms is discussed.