894 resultados para Piezoresistive devices
Resumo:
In this paper, a musical learning application for mobile devices is presented. The main objective is to design and develop an application capable of offering exercises to practice and improve a selection of music skills, to users interested in music learning and training. The selected music skills are rhythm, melodic dictation and singing. The application includes an audio signal analysis system implemented making use of the Goertzel algorithm which is employed in singing exercises to check if the user sings the right musical note. This application also includes a graphical interface to represent musical symbols. A set of tests were conducted to check the usefulness of the application as musical learning tool. A group of users with different music knowledge have tested the system and reported to have found it effective, easy and accessible.
Resumo:
Recent advancements in the area of nanotechnology have brought us into a new age of pervasive computing devices. These computing devices grow ever smaller and are being used in ways which were unimaginable before. Recent interest in developing a precise indoor positioning system, as opposed to existing outdoor systems, has given way to much research heading into the area. The use of these small computing devices offers many conveniences for usage in indoor positioning systems. This thesis will deal with using small computing devices Raspberry Pi’s to enable and improve position estimation of mobile devices within closed spaces. The newly patented Orthogonal Perfect DFT Golay coding sequences will be used inside this scenario, and their positioning properties will be tested. After that, testing and comparisons with other coding sequences will be done.
Resumo:
Dedicated multi-project wafer (MPW) runs for photonic integrated circuits (PICs) from Si foundries mean that researchers and small-to-medium enterprises (SMEs) can now afford to design and fabricate Si photonic chips. While these bare Si-PICs are adequate for testing new device and circuit designs on a probe-station, they cannot be developed into prototype devices, or tested outside of the laboratory, without first packaging them into a durable module. Photonic packaging of PICs is significantly more challenging, and currently orders of magnitude more expensive, than electronic packaging, because it calls for robust micron-level alignment of optical components, precise real-time temperature control, and often a high degree of vertical and horizontal electrical integration. Photonic packaging is perhaps the most significant bottleneck in the development of commercially relevant integrated photonic devices. This article describes how the key optical, electrical, and thermal requirements of Si-PIC packaging can be met, and what further progress is needed before industrial scale-up can be achieved.
Resumo:
Situational Awareness provides a user centric approach to security and privacy. The human factor is often recognised as the weakest link in security, therefore situational perception and risk awareness play a leading role in the adoption and implementation of security mechanisms. In this study we assess the understanding of security and privacy of users in possession of wearable devices. The findings demonstrate privacy complacency, as the majority of users trust the application and the wearable device manufacturer. Moreover the survey findings demonstrate a lack of understanding of security and privacy by the sample population. Finally the theoretical implications of the findings are discussed.
Resumo:
This thesis describes the synthesis and characterisation of novel conjugated organic materials with optoelectronic application. The first chapter provides an introduction about organic semiconductors and in particular about their working principle from a physical and chemical point of view. An overview of the most common types of solar cells is provided, including examples of some of the best performing materials. The second chapter describes the synthesis of a new library of flavin derivatives as potential active materials for optoelectronic applications. Flavins are natural redox-active molecules, which show potential application in optoelectronics, thanks to their stability and versatility. FPF-Flavins, for instance, could be used either as acceptor units in push-pull polyconjugated systems or as acceptor unit in dyes for DSSCs. In the same chapter a first attempt of synthesising bis-flavins to be used as N-type semiconductors in BHJ devices is described. The third chapter describes the successful synthesis and characterization of a series of conjugated organic molecules based on the benzothiadiazole moiety. Among these, three molecules containing ferrocene as donor unit were tested as sensitizers for DSSCs, reporting a PCE of 0.3% as the best result. Further studies indicated a significant problem of charge recombination which limits the performance. A near-infrared absorbing push-pull polymer, based on BbT as acceptor unit, was also synthesised and tested in BHJ devices as P-type semiconductor in blend with PC71BM, showing a VOC of 0.71 V. Finally, the last chapter describes the synthesis of several tetrathiafulvalene derivatives in order to explore this moiety as donor unit in dyes for DSSCs and as HTM for perovskite-based solar cells. In particular, two very simple dyes were synthesised and implemented in DSSCs reporting a PCE 0.2% and 0.4%, respectively. The low efficiency was associated to the tendency to aggregate at the solid state, with the absorption shifting from the visible to the infrared range. A conjugated molecule, containing a DPP core, was also synthesised and tested as HTM for perovskite solar cells. The best reported PCE of 7.7% was obtained without any additives. A case study about dehalogenation and “halogen dance” in TTF iodide is also presented.
Resumo:
In the last decades, the possibility to generate plasma at atmospheric pressure gave rise to a new emerging field called plasma medicine; it deals with the application of cold atmospheric pressure plasmas (CAPs) or plasma-activated solutions on or in the human body for therapeutic effects. Thanks to a blend of synergic biologically active agents and biocompatible temperatures, different CAP sources were successfully employed in many different biomedical applications such as dentistry, dermatology, wound healing, cancer treatment, blood coagulation, etc.… Despite their effectiveness has been verified in the above-mentioned biomedical applications, over the years, researchers throughout the world described numerous CAP sources which are still laboratory devices not optimized for the specific application. In this perspective, the aim of this dissertation was the development and the optimization of techniques and design parameters for the engineering of CAP sources for different biomedical applications and plasma medicine among which cancer treatment, dentistry and bioaerosol decontamination. In the first section, the discharge electrical parameters, the behavior of the plasma streamers and the liquid and the gas phase chemistry of a multiwire device for the treatment of liquids were performed. Moreover, two different plasma-activated liquids were used for the treatment of Epithelial Ovarian Cancer cells and fibroblasts to assess their selectivity. In the second section, in accordance with the most important standard regulations for medical devices, were reported the realization steps of a Plasma Gun device easy to handle and expected to be mounted on a tabletop device that could be used for dental clinical applications. In the third section, in relation to the current COVID-19 pandemic, were reported the first steps for the design, realization, and optimization of a dielectric barrier discharge source suitable for the treatment of different types of bioaerosol.
Resumo:
This thesis is based on two studies that are related to floating wave energy conversion (WEC) devices and turbulent fountains. The ability of the open-source CFD software OpenFOAM® has been studied to simulate these phenomena. The CFD model has been compared with the physical experimental results. The first study presents a model of a WEC device, called MoonWEC, which is patented by the University of Bologna. The CFD model of the MoonWEC under the action of waves has been simulated using OpenFOAM and the results are promising. The reliability of the CFD model is confirmed by the laboratory experiments, conducted at the University of Bologna, for which a small-scale prototype of the MoonWEC was made from wood and brass. The second part of the thesis is related to the turbulent fountains which are formed when a heavier source fluid is injected upward into a lighter ambient fluid, or else a lighter source fluid is injected downward into a heavier ambient fluid. For this study, the first case is considered for laboratory experiments and the corresponding CFD model. The vertical releases of the source fluids into a quiescent, uniform ambient fluid, from a circular source, were studied with different densities in the laboratory experiments, conducted at the University of Parma. The CFD model has been set up for these experiments. Favourable results have been observed from the OpenFOAM simulations for the turbulent fountains as well, indicating that it can be a reliable tool for the simulation of such phenomena.
Resumo:
Reinforcement Learning is an increasingly popular area of Artificial Intelligence. The applications of this learning paradigm are many, but its application in mobile computing is in its infancy. This study aims to provide an overview of current Reinforcement Learning applications on mobile devices, as well as to introduce a new framework for iOS devices: Swift-RL Lib. This new Swift package allows developers to easily support and integrate two of the most common RL algorithms, Q-Learning and Deep Q-Network, in a fully customizable environment. All processes are performed on the device, without any need for remote computation. The framework was tested in different settings and evaluated through several use cases. Through an in-depth performance analysis, we show that the platform provides effective and efficient support for Reinforcement Learning for mobile applications.
Resumo:
This article reports on factors affecting local academic acceptance of bring your own devices (BYOD). A review of the literature revealed a paucity of studies that have explored the complex factors that affect academic use and intention to use mobile devices in the classroom, with even less exploring truly ubiquitous and varied personal devices as opposed to supplied institutional or research study sets. A detailed qualitative investigation with 14 academics was undertaken, drawing upon and aiming to compliment mature acceptance research. Firstly by employing a focus group to identify initial psychological factors and the relevance of acceptance theories to the local context. Then, secondly by using in-depth semi-structured interviews, shaped by acceptance categories, to identify a breadth of psychological factors affecting faculty use and intention to use BYOD. This small-scale study found clear distinctions in local academic perceptions of BYOD compared with faculty devices and reported a range of factors that appeared to distinctly affect local academic acceptance of BYOD.
Resumo:
The role of non-neuronal brain cells, called astrocytes, is emerging as crucial in brain function and dysfunction, encompassing the neurocentric concept that was envisioning glia as passive components. Ion and water channels and calcium signalling, expressed in functional micro and nano domains, underpin astrocytes’ homeostatic function, synaptic transmission, neurovascular coupling acting either locally and globally. In this respect, a major issue arises on the mechanism through which astrocytes can control processes across scales. Finally, astrocytes can sense and react to extracellular stimuli such as chemical, physical, mechanical, electrical, photonic ones at the nanoscale. Given their emerging importance and their sensing properties, my PhD research program had the general goal to validate nanomaterials, interfaces and devices approaches that were developed ad-hoc to study astrocytes. The results achieved are reported in the form of collection of papers. Specifically, we demonstrated that i) electrospun nanofibers made of polycaprolactone and polyaniline conductive composites can shape primary astrocytes’ morphology, without affecting their function ii) gold coated silicon nanowires devices enable extracellular recording of unprecedented slow wave in primary differentiated astrocytes iii) colloidal hydrotalcites films allow to get insight in cell volume regulation process in differentiated astrocytes and to describe novel cytoskeletal actin dynamics iv) gold nanoclusters represent nanoprobe to trigger astrocytes structure and function v) nanopillars of photoexcitable organic polymer are potential tool to achieve nanoscale photostimulation of astrocytes. The results were achieved by a multidisciplinary team working with national and international collaborators that are listed and acknowledged in the text. Collectively, the results showed that astrocytes represent a novel opportunity and target for Nanoscience, and that Nanoglial interface might help to unveil clues on brain function or represent novel therapeutic approach to treat brain dysfunctions.
Resumo:
Advanced cell cultures are developing rapidly in biomedical research. Nowadays, various approaches and technologies are being used, however, these culturing systems present limitations from increasing complexity, requiring high costs, and not easily customization. We present two versatile and cost-effective methods for developing culturing systems that integrate 3D cell culture and microfluidic platforms. Firstly, for drug screening applications, many high-quality cell spheres of homogeneous size and shape are required. Conventional approaches usually have a dearth of control over the size and geometry of cell spheres and require sample collection and manipulation. To overcome this difficulty, in this study, hundreds of spheroids of several cell lines were generated using multi-well plates that housed our microdevices. Tumor spheroids grow at a uniform rate (in scaffolded or scaffold-free environments) and can be harvested at will. Microscopy imaging are done in real time during or after the culture. After in situ immunostaining, fluorescence imaging can be conducted while keeping the spatial distribution of spheroids in the microwells. Drug effects were successfully observed through viability, growth, and morphologic investigations. Also, we fabricated a microfluidic device suitable for directed and selective cell culture treatments. The microfluidic device was used to reproduce and confirm in vitro investigations carried out using normal culture methods, using a microglia cell line. The device layout and the syringe pump system, entirely designed in our lab, successfully allowed culture growth and medium flow regulation. Solution flows can be finely controlled, allowing treatments and immunofluorescence in one single chamber selectively. To conclude, we propose the development of two culturing platforms (microstructured well devices and in-flow microfluidic chip), which are the result of separate scientific investigations but have the primary goal of performing treatments in a reproducible manner. Our devices shall improve future studies on drug exposure testing, representing adjustable and versatile cell culture systems.
Resumo:
Biological systems are complex and highly organized architectures governed by non-covalent interactions responsible for the regulation of essential tasks in all living organisms. These systems are a constant source of inspiration for supramolecular chemists aiming to design multicomponent molecular assemblies able to perform elaborated tasks, thanks to the role and action of the components that constitute them. Artificial supramolecular systems exploit non-covalent interactions to mimic naturally occurring events. In this context, stimuli-responsive supramolecular systems have attracted attention due to the possibility to control macroscopic effects through modifications at the nanoscale. This thesis is divided in three experimental chapters, characterized by a progressive increase in molecular complexity. Initially, the preparation and studies of liposomes functionalized with a photoactive guest such as azobenzene in the bilayer were tackled, in order to evaluate the effect of such photochrome on the vesicle properties. Subsequently, the synthesis and studies of thread-like molecules comprising an azobenzene functionality was reported. Such molecules were conceived to be intercalated in the bilayer membrane of liposomes with the aim to be used as components for photoresponsive transmembrane molecular pumps. Finally, a [3]rotaxane was developed and studied in solution. This system is composed of two crown ether rings interlocked with an axle containing three recognition sites for the macrocycles, i.e. two pH-switchable ammonium stations and a permanent triazolium station. Such molecule was designed to achieve a change in the ratio between the recognition sites and the crown ethers as a consequence of acid-base inputs. This leads to the formation of rotaxanes containing a number of recognition sites respectively larger, equal or lower than the number of interlocked rings and connected by a network of acid-base reactions.
Resumo:
The work activities reported in this PhD thesis regard the functionalization of composite materials and the realization of energy harvesting devices by using nanostructured piezoelectric materials, which can be integrated in the composite without affecting its mechanical properties. The self-sensing composite materials were fabricated by interleaving between the plies of the laminate the piezoelectric elements. The problem of negatively impacting on the mechanical properties of the hosting structure was addressed by shaping the piezoelectric materials in appropriate ways. In the case of polymeric piezoelectric materials, the electrospinning technique allowed to produce highly-porous nanofibrous membranes which can be immerged in the hosting matrix without inducing delamination risk. The flexibility of the polymers was exploited also for the production of flexible tactile sensors. The sensing performances of the specimens were evaluated also in terms of lifetime with fatigue tests. In the case of ceramic piezo-materials, the production and the interleaving of nanometric piezoelectric powder limitedly affected the impact resistance of the laminate, which showed enhanced sensing properties. In addition to this, a model was proposed to predict the piezoelectric response of the self-sensing composite materials as function of the amount of the piezo-phase within the laminate and to adapt its sensing functionalities also for quasi-static loads. Indeed, one final application of the work was to integrate the piezoelectric nanofibers in the sole of a prosthetic foot in order to detect the walking cycle, which has a period in the order of 1 second. In the end, the energy harvesting capabilities of the piezoelectric materials were investigated, with the aim to design wearable devices able to collect energy from the environment and from the body movements. The research activities focused both on the power transfer capability to an external load and the charging of an energy storage unit, like, e.g., a supercapacitor.
Resumo:
The presented Thesis describes the design of RF-energy harvesting systems with applications on different environments, from the biomedical side to the industrial one, tackling the common thread problem which is the design of complete energy autonomous tags each of them with its dedicated purpose. This Thesis gathers a work of three years in the field of energy harvesting system design, a combination of full-wave electromagnetic designs to optimize not only the antenna performance but also to fulfill the requirements given by each case study such as dimensions, insensitivity from the surrounding environment, flexibility and compliance with regulations. The research activity has been based on the development of highly-demanded ideas and real-case necessities which are in line with the environment in which modern IoT applications can really make a positive contribution. The Thesis is organized as follows: the first application, described in Chapter 2, regards the design and experimental validations of a rotation-insensitive WPT system for implantable devices. Chapter 3 presents the design of a wearable energy autonomous detector to identify the presence of ethanol on the body surface. Chapter 4 describes investigations in the use of Bessel Beam launchers for creating a highly-focused energy harvesting link for wearable applications. Reduced dimensions, high focusing and decoupling from the human body are the key points to be addressed during the full-wave design and nonlinear optimization of the receiver antenna. Finally, Chapter 5 presents an energy autonomous system exploiting LoRa (Long Range) nodes for tracking trailers in industrial plants. The novelty behind this design lies on the aim of obtaining a perfectly scalable system that exploits not only EH basic operating system but embeds a seamless solution for collecting a certain amount of power that varies with respect the received power level on the antenna, without the need of additional off-the-shelf components.