963 resultados para Piezoelectric vibration
Resumo:
Slip, trip, and fall injuries are frequent among health care workers. Stochastic resonance whole-body vibration training was tested to improve postural control. Participants included 124 employees of a Swiss university hospital. The randomized controlled trial included an experimental group given 8 weeks of training and a control group with no intervention. In both groups, postural control was assessed as mediolateral sway on a force plate before and after the 8-week trial. Mediolateral sway was significantly decreased by stochastic resonance whole-body vibration training in the experimental group but not in the control group that received no training (p < .05). Stochastic resonance whole-body vibration training is an option in the primary prevention of balance-related injury at work.
Resumo:
OBJECTIVES: Stochastic resonance whole body vibrations (SR-WBV) may reduce and prevent musculoskeletal problems (MSP). The aim of this study was to evaluate how activities of the lumbar erector spinae (ES) and of the ascending and descending trapezius (TA, TD) change in upright standing position during SR-WBV. METHODS: Nineteen female subjects completed 12 series of 10 seconds of SR-WBV at six different frequencies (2, 4, 6, 8, 10, 12Hz) and two types of "noise"-applications. An assessment at rest had been executed beforehand. Muscle activities were measured with EMG and normalized to the maximum voluntary contraction (MVC%). For statistical testing a three-factorial analysis of variation (ANOVA) was applied. RESULTS: The maximum activity of the respective muscles was 14.5 MVC% for the ES, 4.6 MVC% for the TA (12Hz with "noise" both), and 7.4 MVC% for the TD (10Hz without "noise"). Furthermore, all muscles varied significantly at 6Hz and above (p⋜0.047) compared to the situation at rest. No significant differences were found at SR-WBV with or without "noise". CONCLUSIONS: In general, muscle activity during SR-WBV is reasonably low and comparable to core strength stability exercises, sensorimotor training and "abdominal hollowing" in water. SR-WBV may be a therapeutic option for the relief of MSP.
Resumo:
Recently, ocular vestibular evoked myogenic potentials (oVEMP) have emerged as a tool for assessment of utricular function. They are short-latency myogenic potentials which can be elicited in response to vestibular stimulation, e.g. by air-conducted sound (ACS) or bone-conducted vibration (BCV) (reviewed in (Kantner and Gurkov, 2012)). Otolithic afferent neurons trigger reflexive electromyographic activity of the extraocular muscles which can be recorded beneath the eye contralateral to the stimulated ear by use of surface electrodes.
Resumo:
The electromechanical response of piezoelectrically-actuated AlN micromachined bridge resonators has been characterized using laser interferometry and electrical admittance measurements. We compare the response of microbridges with different dimensions and buckling (induced by the initial residual stress of the layers). The resonance frequencies are in good agreement with numerical simulations of the electromechanical behavior of the structures. We show that it is possible to perform a rough tuning of the resonance frequencies by allowing a determined amount of builtin stress in the microbridge during its fabrication. Once the resonator is made, a DC bias added to the AC excitation signal allows to fine-tune the frequency. Our microbridges yield a tuning factor of around 88 Hz/V for a 500 ?m-long microbridge.
Resumo:
Ultrasonic transducers have often been used in the development of sensory systems for robotics applications. In most cases, these sensory systems are based on the determination of times of flight for signals from every transducer. In this work we have used piezoresistive and piezoelectric materials to measure the instant and position collision in metallic structures by using the difference of the times of propagation of an acoustic wave when it is produced over a ferromagnetic (iron, steel or another material) based structure. An immediate application of the proposed method is the detection and location of impacts over the metallic links of an industrial robot or the collision position in a metallic structure for an automated inspection
Resumo:
Flat or worn wheels rolling on rough or corrugated tracks can provoke airborne noise and ground-borne vibration, which can be a serious concern for nearby neighbours of urban rail transit lines. Among the various treatments used to reduce vibration and noise, resilient wheels play an important role. In conventional resilient wheels, a slightly prestressed Vshaped rubber ring is mounted between the steel wheel centre and tyre. The elastic layer enhances rolling noise and vibration suppression, as well as impact reduction on the track. In this paper the effectiveness of resilient wheels in underground lines, in comparison to monobloc ones, is assessed. The analysed resilient wheel is able to carry greater loads than standard resilient wheels used for light vehicles. It also presents a greater radial resiliency and a higher axial stiffness than conventional Vwheels. The finite element method was used in this study. A quarter car model was defined, in which the wheelset was modelled as an elastic body. Several simulations were performed in order to assess the vibrational behaviour of elastic wheels, including modal, harmonic and random vibration analysis, the latter allowing the introduction of realistic vertical track irregularities, as well as the influence of the running speed. Due to numerical problems some simplifications were needed. Parametric variations were also performed, in which the sensitivity of the whole system to variations of rubber prestress and Poisson’s ratio of the elastic material was assessed.Results are presented in the frequency domain, showing a better performance of the resilient wheels for frequencies over 200 Hz. This result reveals the ability of the analyzed design to mitigate rolling noise, but not structural vibrations, which are primarily found in the lower frequency range.
Resumo:
Laminatedglass is composed of two glass layers and a thin intermediate PVB layer, strongly influencing PVB's viscoelastic behaviour its dynamic response. While natural frequencies are relatively easily identified even with simplified FE models, damping ratios are not identified with such an ease. In order to determine to what extent external factors influence dampingidentification, different tests have been carried out. The external factors considered, apart from temperature, are accelerometers, connection cables and the effect of the glass layers. To analyse the influence of the accelerometers and their connection cables a laser measuring device was employed considering three possibilities: sample without instrumentation, sample with the accelerometers fixed and sample completely instrumented. When the sample is completely instrumented, accelerometer readings are also analysed. To take into consideration the effect of the glass layers, tests were realised both for laminatedglass and monolithic samples. This paper presents in depth data analysis of the different configurations and establishes criteria for data acquisition when testing laminatedglass.
Resumo:
The dynamic floor loads induced by crowds in gymnasium or stadium structures are commonly modelled by superposition of the individual contributions using reduction factors for the different Fourier coefficients. These Fourier coefficients and the reduction factors are calculated using full scale measurements. Generally the testing is performed on platforms or structures that can be considered rigid, such that the natural frequencies are higher than the frequencies of the spectator movement. In this paper we shall present the testing done on a structure that used to be a gymnasium as well as the procedure used to identify its dynamic properties and a first evaluation of the socalled “group effect”.
Resumo:
The flexural vibration of a homogeneous isotropic linearly elastic cylinder of any aspect ratio is analysed in this paper. Natural frequencies of a cylinder under uniformly distributed axial loads acting on its bases are calculated numerically by the Ritz method with terms of power series in the coordinate directions as approximating functions. The effect of axial loads on the flexural vibration cannot be described by applying infinitesimal strain theory, therefore, geometrically nonlinear strain–displacement relations with second-order terms are considered here. The natural frequencies of free–free, clamped–clamped, and sliding–sliding cylinders subjected to axial loads are calculated using the proposed three-dimensional Ritz approach and are compared with those obtained with the finite element method and the Bernoulli–Euler theory. Different experiments with cylinders axially compressed by a hydraulic press are carried out and the experimental results for the lowest flexural frequency are compared with the numerical results. An approach based on the Ritz formulation is proposed for the flexural vibration of a cylinder between the platens of the press with constraints varying with the intensity of the compression. The results show that for low compressions the cylinder behaves similarly to a sliding–sliding cylinder, whereas for high compressions the cylinder vibrates as a clamped–clamped one.
Resumo:
Civil engineering structures such as floor systems with open-plan layout or lightweight footbridges are susceptible to excessive level of vibrations caused by human loading. Active vibration control (AVC) via inertial mass actuators has been shown to be a viable technique to mitigate vibrations, allowing structures to satisfy vibration serviceability limits. Most of the AVC applications involve the use of SISO (single input single-output) strategies based on collocated control. However, in the case of floor structures, in which mostof the vibration modes are locally spatially distributed, SISO or multi-SISO strategies are quite inefficient. In this paper, a MIMO (multi-inputs multi-outputs) control in decentralised and centralised configuration is designed. The design process simultaneously finds the placement of multiple actuators and sensors and the output feedback gains. Additionally, actuator dynamics, actuator nonlinearities and frequency and time weightings are considered into the design process. Results with SISO and decentralised and centralised MIMO control (for a given number of actuators and sensors) are compared, showing the advantages of MIMO control for floor vibration control.
Resumo:
In this work we present the assessment of the structural and piezoelectric properties of Al(0.5-x)TixN0.5 compounds (titanium content menor que6% atomic), which are expected to possess improved properties than conventional AlN films, such as larger piezoelectric activity, thermal stability of frequency and temperature resistance. Al:Ti:N films were deposited from a twin concentric target of Al and Ti by reactive AC sputtering, which provided films with a radial gradient of the Ti concentration. The properties of the films were investigated as a function of their composition, which was measured by electron dispersive energy dispersive X-ray spectroscopy and Rutherford backscattering spectrometry. The microstructure and morphology of the films were assessed by X-ray diffraction and infrared reflectance. Their electroacoustic properties and dielectric constant were derived from the frequency response of BAW test resonators. Al:Ti:N films properties appear to be strongly dependent on the Ti content, which modifies the AlN wurtzite crystal structure leading to greater dielectric constant, lower sound velocities, lower electromechanical factor and moderately improved temperature coefficient of the resonant frequency.
Resumo:
En esta comunicación se presenta el método para obtener modelos equivalentes eléctricos de materiales piezoeléctricos utilizados en entornos con tráfico vial para aplicaciones "Energy Harvesting". Los resultados experimentales se procesan para determinar la estructura topológica óptima y la tecnología de los elementos semiconductores utilizados en la etapa de entrada del sistema de alimentación "harvesting". Asimismo se presenta el modelo de la fuente de alimentación no regulada bajo demanda variable de corriente. Abstract: The method to obtain electrical equivalent models of piezoelectric materials used in energy harvesting road traffic environment is presented in this paper. The experimental results are processed in order to determine the optimal topological structure and technology of the semiconductor elements used in the input stage of the power harvesting system. The non regulated power supply model under variable current demand is also presented.
Resumo:
This article describes the simulation and characterization of an ultrasonic transducer using a new material called Rexolite to be used as a matching element. This transducer was simulated using a commercial piezoelectric ceramic PIC255 at 8 MHz. Rexolite, the new material, presents an excellent acoustic matching, specially in terms of the acoustic impedance of water. Finite elements simulations were used in this work. Rexolite was considered as a suitable material in the construction of the transducer due to its malleability and acoustic properties, to validate the simulations a prototype transducer was constructed. Experimental measurements were used to determine the resonance frequency of the prototype transducer. Simulated and experimental results were very similar showing that Rexolite may be an excellent matching, particularly for medical applications.
Resumo:
El presente trabajo de tesis investiga el efecto del fenómeno conocido como “Cross-talk” generado por el modo lateral de vibración, en la respuesta de un transductor ultrasónico formado por un arreglo de elementos piezoeléctricos tipo PZT (Zircanato Titanato de Plomo), la investigación se lleva a cabo desde el punto de vista de la naturaleza física de este efecto, así como de los parámetros asociados al mismo, así como un análisis del efecto del “Cross-talk” en la respuesta del transductor, formado por arreglos de elementos piezoeléctricos. Diversas investigaciones han abordado el fenómeno del “Cross-talk” y de sus efectos en la respuesta de los transductores, estos se han enfocado principalmente al modo espesor (thickness) de vibración. Sin embargo no ha habido un estudio a fondo para el estudio de este fenómeno en el modo lateral de vibración tema de interés de este trabajo de tesis. Este trabajo incluye simulaciones del fenómeno del “Cross-talk” mediante el método de los elementos finitos (MEF), así como la construcción de un transductor tipo matricial (arrray) de 2x3 elementos, en el que fueron realizadas las mediciones físicas del fenómeno. El trabajo abarca un estudio comparativo entre las simulaciones y las mediciones realizadas en el transductor, considerando que las cerámicas del transductor están montadas sobre diferentes materiales (backing) en donde la propagación de la energía emitida por las cerámicas piezoeléctricas provoca un mayor o menor grado de “Cross-talk” dependiendo de la velocidad en que se propaga dicha energía. Esta investigación también llevó a cabo el estudio del efecto del “Cross-talk” en el patrón de radiación que emite el arreglo de elementos piezoeléctricos, siendo este patrón de radiación un factor importante en la respuesta del transductor, motivo por el cual se realizó un análisis de cómo se ve afectado este patrón bajo la influencia del fenómeno del “Cross-talk”. Como ya se mencionó debido a la falta de un estudio a profundidad del fenómeno del “Cross-talk” en el modo lateral, la contribución del presente trabajo es importante ya que se enfoca al modo lateral de vibración de los elementos piezoeléctricos del arreglo. En particular se desarrollo una ecuación que permite cuantificar el fenómeno del “Cross-talk” y visualizar sus efectos en el arreglo. Derivando de este estudio se concluye que el fenómeno del “Cross-talk” generado por el modo lateral de vibración tiene un efecto significativo en la respuesta de los diferentes transductores matriciales considerados. ABSTRACT This thesis investigates the effect of the phenomenon known as crosstalk from the point of view of its physical nature and the elements that lead to the formation of this phenomenon to an analysis of how it may affect the performance of the ultrasonic transducer. This phenomenon occurs primarily in matrix arrays and this phenomenon is magnified by certain factors causing serious problems in the performance of a transducer. Researchers have addressed the phenomenon of crosstalk and their effects on the response of these transducers. They have mainly focused in the thickness vibration mode, and there has been no comprehensive study of this phenomenon in the lateral vibration mode, issue of interest of this thesis. This work includes simulations of the crosstalk phenomenon using the finite element method (FEM), and the construction of a matrix type transducer (array) of 2x3 elements, in which physical measurements were made. The work includes a comparative study between simulations and measurements in the transducer, whereas the ceramic transducer are mounted on different materials (backing) where the spread of the energy emitted by the piezoelectric ceramic causes a greater or lesser degree of crosstalk depending on the speed at which this energy spreads. This research also carried out the study of the effect of the crosstalk in the radiation pattern emitted by the piezoelectric array. The radiation pattern is an important factor in the response of the transducer that is why we conducted an analysis of how this pattern is affected under the influence of the crosstalk phenomenon. As mentioned before because of the lack of an in-depth study of the crosstalk phenomenon in the lateral vibration mode, the contribution of this work is important because it focuses in this vibration mode of the piezoelectric elements in the array. In particular, an equation was developed to quantify the crosstalk phenomenon and to see its effects in the array. Deriving from this study it is possible to conclude that the crosstalk phenomenon generated by the lateral vibration mode has a significant effect on the response of the different matrix transducers considered in this work.