1000 resultados para Pfaffian problem
Resumo:
A new heuristic for the Steiner Minimal Tree problem is presented here. The method described is based on the detection of particular sets of nodes in networks, the “Hot Spot” sets, which are used to obtain better approximations of the optimal solutions. An algorithm is also proposed which is capable of improving the solutions obtained by classical heuristics, by means of a stirring process of the nodes in solution trees. Classical heuristics and an enumerative method are used CIS comparison terms in the experimental analysis which demonstrates the goodness of the heuristic discussed in this paper.
Resumo:
A new heuristic for the Steiner minimal tree problem is presented. The method described is based on the detection of particular sets of nodes in networks, the “hot spot” sets, which are used to obtain better approximations of the optimal solutions. An algorithm is also proposed which is capable of improving the solutions obtained by classical heuristics, by means of a stirring process of the nodes in solution trees. Classical heuristics and an enumerative method are used as comparison terms in the experimental analysis which demonstrates the capability of the heuristic discussed
Resumo:
In the recent years, the unpredictable growth of the Internet has moreover pointed out the congestion problem, one of the problems that historicallyha ve affected the network. This paper deals with the design and the evaluation of a congestion control algorithm which adopts a FuzzyCon troller. The analogyb etween Proportional Integral (PI) regulators and Fuzzycon trollers is discussed and a method to determine the scaling factors of the Fuzzycon troller is presented. It is shown that the Fuzzycon troller outperforms the PI under traffic conditions which are different from those related to the operating point considered in the design.
Resumo:
This paper presents a parallel genetic algorithm to the Steiner Problem in Networks. Several previous papers have proposed the adoption of GAs and others metaheuristics to solve the SPN demonstrating the validity of their approaches. This work differs from them for two main reasons: the dimension and the characteristics of the networks adopted in the experiments and the aim from which it has been originated. The reason that aimed this work was namely to build a comparison term for validating deterministic and computationally inexpensive algorithms which can be used in practical engineering applications, such as the multicast transmission in the Internet. On the other hand, the large dimensions of our sample networks require the adoption of a parallel implementation of the Steiner GA, which is able to deal with such large problem instances.
Resumo:
Six parameters uniquely describe the orbit of a body about the Sun. Given these parameters, it is possible to make predictions of the body's position by solving its equation of motion. The parameters cannot be directly measured, so they must be inferred indirectly by an inversion method which uses measurements of other quantities in combination with the equation of motion. Inverse techniques are valuable tools in many applications where only noisy, incomplete, and indirect observations are available for estimating parameter values. The methodology of the approach is introduced and the Kepler problem is used as a real-world example. (C) 2003 American Association of Physics Teachers.
Resumo:
This paper is concerned with solving numerically the Dirichlet boundary value problem for Laplace’s equation in a nonlocally perturbed half-plane. This problem arises in the simulation of classical unsteady water wave problems. The starting point for the numerical scheme is the boundary integral equation reformulation of this problem as an integral equation of the second kind on the real line in Preston et al. (2008, J. Int. Equ. Appl., 20, 121–152). We present a Nystr¨om method for numerical solution of this integral equation and show stability and convergence, and we present and analyse a numerical scheme for computing the Dirichlet-to-Neumann map, i.e., for deducing the instantaneous fluid surface velocity from the velocity potential on the surface, a key computational step in unsteady water wave simulations. In particular, we show that our numerical schemes are superalgebraically convergent if the fluid surface is infinitely smooth. The theoretical results are illustrated by numerical experiments.
Resumo:
This paper provides an extended analysis of the child labor problem in the artisanal and small-scale mining (ASM) sector, focusing specifically on the situation in sub-Saharan Africa. In recent years, the issue of child labor in ASM has garnered significant attention from the International Labor Organization (ILO), which has been particularly active in raising public awareness of the problem; and, has proceeded to implement policies and collaborative project work aimed at Curtailing children's participation in ASM activities in a number of African countries. The analysis concludes with a critical appraisal of an ILO project recently launched in the Talensi-Nabdam District in the Upper East Region of Ghana, which sheds light on how the child labor problem is being tackled in practice in ASM communities in sub-Saharan Africa. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This note presents a robust method for estimating response surfaces that consist of linear response regimes and a linear plateau. The linear response-and-plateau model has fascinated production scientists since von Liebig (1855) and, as Upton and Dalton indicated, some years ago in this Journal, the response-and-plateau model seems to fit the data in many empirical studies. The estimation algorithm evolves from Bayesian implementation of a switching-regression (finite mixtures) model and demonstrates routine application of Gibbs sampling and data augmentation-techniques that are now in widespread application in other disciplines.