983 resultados para Periodontal-Ligament
Resumo:
Although intervertebral disc herniation is a well-known disease in dogs, pain management for this condition has remained a challenge. The goal of the present study is to address the lack of information regarding the innervation of anatomical structures within the canine vertebral canal. Immunolabeling was performed with antibodies against protein gene product 9.5, Tuj-1 (neuron-specific class III β-tubulin), calcitonin gene-related peptide, and neuropeptide Y in combination with the lectin from Lycopersicon esculentum as a marker for blood vessels. Staining was indicative of both sensory and sympathetic fibers. Innervation density was the highest in lateral areas, intermediate in dorsal areas, and the lowest in ventral areas. In the dorsal longitudinal ligament (DLL), the highest innervation density was observed in the lateral regions. Innervation was lower at mid-vertebral levels than at intervertebral levels. The presence of sensory and sympathetic fibers in the canine dura and DLL suggests that pain may originate from both these structures. Due to these regional differences in sensory innervation patterns, trauma to intervertebral DLL and lateral dura is expected to be particularly painful. The results ought to provide a better basis for the assessment of medicinal and surgical procedures.
Resumo:
Sclerostin is a Wnt signalling antagonist that controls bone metabolism. Sclerostin is expressed by osteocytes and cementocytes; however, its role in the formation of dental structures remains unclear. Here, we analysed the mandibles of sclerostin knockout mice to determine the influence of sclerostin on dental structures and dimensions using histomorphometry and micro-computed tomography (μCT) imaging. μCT and histomorphometric analyses were performed on the first lower molar and its surrounding structures in mice lacking a functional sclerostin gene and in wild-type controls. μCT on six animals in each group revealed that the dimension of the basal bone as well as the coronal and apical part of alveolar part increased in the sclerostin knockout mice. No significant differences were observed for the tooth and pulp chamber volume. Descriptive histomorphometric analyses of four wild-type and three sclerostin knockout mice demonstrated an increased width of the cementum and a concomitant moderate decrease in the periodontal space width. Taken together, these results suggest that the lack of sclerostin mainly alters the bone and cementum phenotypes rather than producing abnormalities in tooth structures such as dentin.
Resumo:
Introduction: Anterior cruciate ligament (ACL) injuries are very common; in Germany incidence of ACL ruptures is estimated at 32 per 100 000 in the general population and in the sports community this rate more than doubles. Current gold standard for anterior cruciate lig- ament repair is reconstruction using an autograft [1]. However, this approach has shown some limitations. A new method has been her- alded by the Knee Team at the Bern University Hospital (Inselspital) and the Sonnenhof clinic called Dynamic Intraligamentary Stabilization (DIS), which keeps ACL remnants in place in order to promote biologi- cal healing and makes use of a dynamic screw system [2]. The aim of this study was to investigate the cytocompatibility of collagen patches in combination with DIS to support regeneration of the ACL. The spe- cific hypothesis we tested was whether MSCs would differentiate towards TCs in co-culture. Materials and methods: Primary Tenocytes (TCs) and human bone marrow derived mesenchymal stem cells (MSCs) were harvested from ACL removed during knee prothesis or from bone marrow aspirations (Ethical Permit 187/10). Cells were seeded on two types of three dimensional carriers currently approved for cartilage repair, Novocart (NC, B. Brown) and Chondro-Gide (CG, Geistlich). These scaffolds comprise collagen structures with interconnecting pores originally developed for seeding of chondrocytes in the case of CG. ~40k cells were seeded on punched zylindrical cores of 8 mm in Ø and cultured on CG or NC patches for up to 7 days. The cells were either cultured as TC only, MSC only or co-cultured in a 1:1 mix on the scaffolds and on both sides of culture inserts (PET, high density pore Ø 0.4 mm, BD, Fal- con) with cell-cell contact. We monitored DNA content, GAG and HOP-content, tracked the cells using DIL and DIO fluorescent dyes (Molecular Probes, Life technologies) and confocal laser scanning and SEM microscopy as well as RT-PCR of tenocyte specific markers (i.e. col 1 and 3, TNC, TNMD, SCXA&B, and markers of dedifferentiation ACAN, col2, MMP3, MMP13). Finally, H&E stain was interpreted on cryosections and SEM images of cells on the scaffold were taken. Results: ThecLSMimagesshowedcellproliferationoverthe7dayson both matrices, however, on CG there were much fewer MSCs attached than on NC. SEM images showed a roundish chondrocyte-like pheno- type of cells on CG whereas on NC the phenotype was more teno- cyte-like (Fig. 1). Gene expression of both, MSC and TC seem to confirm a more favorable environment in 3D for both patches rather than monolayer control.
Resumo:
AIM: To investigate collagen patches seeded with mesenchymal stem cells (MSCs) and/or tenocytes (TCs) with regards to their suitability for anterior cruciate ligament (ACL) repair. METHODS: Dynamic Intraligamentary Stabilization (DIS) utilizes a dynamic screw system to keep ACL remnants in place and promote biological healing, supplemented by collagen patches. How these scaffolds interact with cells and what type of benefit they provide has not yet been investigated in detail. Primary ACL-derived TCs and human bone marrow derived MSCs were seeded onto two different types of 3D collagen scaffolds, Chondro-Gide® (CG) and Novocart® (NC). Cells were seeded onto the scaffolds and cultured for 7 days either as a pure populations or as “premix” containing a 1 : 1 ratio of TCs to MSCs. Additionally, as controls, cells were seeded in monolayers and in co-cultures on both sides of porous high-density membrane inserts (0.4µm). We analyzed the patches by real time polymerase chain reaction (RT-PCR), glycosaminoglycan (GAG), DNA and hydroxy-proline (HYP) content, was determined. To determine cell spreading and adherence in the scaffolds microscopic imaging techniques, i.e. confocal laser scanning microscopy (cLSM) and scanning electron microscopy (SEM), were applied. RESULTS: CLSM and SEM imaging analysis confirmed cell adherence onto scaffolds. The metabolic cell activity revealed that patches promote adherence and proliferation of cells. The most dramatic increase in absolute metabolic cell activity was measured for CG samples seeded with tenocytes or a 1:1 cell premix. Analysis of DNA content and cLSM imaging also indicated MSCs were not proliferating as nicely as tenocytes on CG. The HYP to GAG ratio significantly changed for the premix group, resulting from a slightly lower GAG content, demonstrating that the cells are modifying the underlying matrix. Real-time quantitative polymerase chain reaction data indicated that MSCs showed a trend of differentiation towards a more tenogenic-like phenotype after 7 days. CONCLUSION: CG and NC are both cyto-compatible with primary MSCs and TCs; TCs seemed to perform better on these collagen patches than MSCs.
Resumo:
Current research indicates that exogenous stem cells may accelerate reparative processes in joint disease but, no previous studies have evaluated whether bone marrow cells (BMCs) target the injured cranial cruciate ligament (CCL) in dogs. The objective of this study was to investigate engraftment of BMCs following intra-articular injection in dogs with spontaneous CCL injury. Autologous PKH26-labelled BMCs were injected into the stifle joint of eight client-owned dogs with CCL rupture. The effects of PKH26 staining on cell viability and PKH26 fluorescence intensity were analysed in vitro using a MTT assay and flow cytometry. Labelled BMCs in injured CCL tissue were identified using fluorescence microscopy of biopsies harvested 3 and 13 days after intra-articular BMC injection. The intensity of PKH26 fluorescence declines with cell division but was still detectable after 16 days. Labelling with PKH26 had no detectable effect on cell viability or proliferation. Only rare PKH26-positive cells were present in biopsies of the injured CCL in 3/7 dogs and in synovial fluid in 1/7 dogs. No differences in transforming growth factor-beta1, and interleukin-6 before and after BMC treatment were found and no clinical complications were noted during a 1 year follow-up period. In conclusion, BMCs were shown to engraft to the injured CCL in dogs when injected into the articular cavity. Intra-articular application of PKH26-labelled cultured mesenchymal stem cells is likely to result in higher numbers of engrafted cells that can be tracked using this method in a clinical setting.
Resumo:
BACKGROUND Loss-of-function point mutations in the cathepsin C gene are the underlying genetic event in patients with Papillon-Lefèvre syndrome (PLS). PLS neutrophils lack serine protease activity essential for cathelicidin LL-37 generation from hCAP18 precursor. AIM We hypothesized that a local deficiency of LL-37 in the infected periodontium is mainly responsible for one of the clinical hallmark of PLS: severe periodontitis already in early childhood. METHODS To confirm this effect, we compared the level of neutrophil-derived enzymes and antimicrobial peptides in gingival crevicular fluid (GCF) and saliva from PLS, aggressive and chronic periodontitis patients. RESULTS Although neutrophil numbers in GCF were present at the same level in all periodontitis groups, LL-37 was totally absent in GCF from PLS patients despite the large amounts of its precursor, hCAP18. The absence of LL-37 in PLS patients coincided with the deficiency of both cathepsin C and protease 3 activities. The presence of other neutrophilic anti-microbial peptides in GCF from PLS patients, such as alpha-defensins, were comparable to that found in chronic periodontitis. In PLS microbial analysis revealed a high prevalence of Aggregatibacter actinomycetemcomitans infection. Most strains were susceptible to killing by LL-37. CONCLUSIONS Collectively, these findings imply that the lack of protease 3 activation by dysfunctional cathepsin C in PLS patients leads to the deficit of antimicrobial and immunomodulatory functions of LL-37 in the gingiva, allowing for infection with A. actinomycetemcomitans and the development of severe periodontal disease.
Resumo:
OBJECTIVES To assess the association between presence of periodontal pathogens and recurrence of disease in patients with aggressive periodontitis (AgP) after active periodontal therapy (APT) and further influencing factors. MATERIAL & METHODS Microbiological samples were taken from 73 patients with AgP 5-17 years after APT at 292 sites (deepest site per quadrant). Real-time polymerase chain reactions were used to detect the periodontal pathogens Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola. Uni- and multivariate analyses evaluated the associations between pathogens and recurrence of disease, smoking and adjunctive antibiotic therapy. RESULTS At re-examination A. actinomycetemcomitans could be detected in six patients (8.2%), P. gingivalis in 24 (32.9%), T. forsythia in 31 (42.5%) and T. denticola in 35 (48.0%). Increased levels of T. forsythia and T. denticola at re-examination were significantly associated with recurrence of disease in multivariate analyses (OR: 12.72, p < 0.001; OR 5.55, p = 0.002 respectively). Furthermore, high counts of T. denticola were found in patients with increased percentage of sites with clinical attachment levels (CAL) ≥ 6 mm compared to those with low counts (13.8% versus 3.2%, p = 0.005). CONCLUSION In patients with recurrence of disease T. forsythia and T. denticola were detected more frequently and in higher counts. Furthermore, T. denticola was found more frequently in patients with increased CAL.
Resumo:
AIM To evaluate the compliance of cigarette smokers with scheduled visits for supportive periodontal therapy (SPT). MATERIALS AND METHODS Qualitative and quantitative analyses of compliance with scheduled SPT visits were performed using retrospective data from patients undergoing dental hygiene treatment at the Medi School of Dental Hygiene (MSDH), Bern, Switzerland 1985-2011. RESULTS A total of 1336 patients were identified with 32.1% (n = 429) being smokers, 23.1% (n = 308) former smokers and 44.8% (n = 599) non-smokers. Qualitatively, significantly less smokers returned for SPT than non-smokers or former smokers (p = 0.0026), whereas 25.9% (n = 346) never returned for SPT. Further quantitative analysis of patients returning twice or more (n = 883) revealed that the overall mean %-compliance was 69.8% (SD ±22.04),whereas smokers complied with 67.0% (SD ±22.00), former smokers with 69.7% (SD ±22.03), and non-smokers with 71.7% (SD ±21.92) reaching statistical significance (p = 0.0111). Confounder adjusted analysis, however, revealed that older age (p = 0.0001), female gender (p = 0.0058), longer SPT intervals (p < 0.0001) and higher severity of periodontal disease (p < 0.0001) had a much greater impact on %-compliance than smoking (p = 0.7636). CONCLUSIONS This study suggests that qualitatively, smokers return less likely for SPT than non-smokers or former smokers while quantitatively, a lower mean %-compliance of smokers attending scheduled SPT visits may be attributed to confounders.
Resumo:
AIM Assess the ability of a panel of gingival crevicular fluid (GCF) biomarkers as predictors of periodontal disease progression (PDP). MATERIALS AND METHODS In this study, 100 individuals participated in a 12-month longitudinal investigation and were categorized into four groups according to their periodontal status. GCF, clinical parameters and saliva were collected bi-monthly. Subgingival plaque and serum were collected bi-annually. For 6 months, no periodontal treatment was provided. At 6 months, patients received periodontal therapy and continued participation from 6 to 12 months. GCF samples were analysed by ELISA for MMP-8, MMP-9, Osteoprotegerin, C-reactive Protein and IL-1β. Differences in median levels of GCF biomarkers were compared between stable and progressing participants using Wilcoxon Rank Sum test (p = 0.05). Clustering algorithm was used to evaluate the ability of oral biomarkers to classify patients as either stable or progressing. RESULTS Eighty-three individuals completed the 6-month monitoring phase. With the exception of GCF C-reactive protein, all biomarkers were significantly higher in the PDP group compared to stable patients. Clustering analysis showed highest sensitivity levels when biofilm pathogens and GCF biomarkers were combined with clinical measures, 74% (95% CI = 61, 86). CONCLUSIONS Signature of GCF fluid-derived biomarkers combined with pathogens and clinical measures provides a sensitive measure for discrimination of PDP (ClinicalTrials.gov NCT00277745).
Resumo:
Periodontitis is a chronic inflammatory disease of the periodontium, which is caused by pathogenic bacteria in combination with other risk factors. The bacteria induce an immunoinflammatory host response, which can lead to irreversible matrix degradation and bone resorption. Periodontitis can be successfully treated. To achieve regenerative periodontal healing, bioactive molecules, such as enamel matrix derivative (EMD), are applied during periodontal surgery. Recently, it has been shown that obesity is associated with periodontitis and compromised healing after periodontal therapy. The mechanisms underlying these associations are not well understood so far, but adipokines may be a pathomechanistic link. Adipokines are bioactive molecules that are secreted by the adipose tissue, and that regulate insulin sensitivity and energy expenditure, but also inflammatory and healing processes. It has also been demonstrated that visfatin and leptin increase the synthesis of proinflammatory and proteolytic molecules, whereas adiponectin downregulates the production of such mediators in periodontal cells. In addition, visfatin and leptin counteract the beneficial effects of EMD, whereas adiponectin enhances the actions of EMD on periodontal cells. Since visfatin and leptin levels are increased and adiponectin levels are reduced in obesity, these adipokines could be a pathomechanistic link whereby obesity and obesity-related diseases enhance the risk for periodontitis and compromised periodontal healing. Recent studies have also revealed that adipokines, such as visfatin, leptin and adiponectin, are produced in periodontal cells and regulated by periodontopathogenic bacteria. Therefore, adipokines may also represent a mechanism whereby periodontal infections can impact on systemic diseases.
Resumo:
BACKGROUND Despite the worldwide increased prevalence of osteoporosis, no data are available evaluating the effect of an enamel matrix derivative (EMD) on the healing of periodontal defects in patients with osteoporosis. This study aims to evaluate whether the regenerative potential of EMD may be suitable for osteoporosis-related periodontal defects. METHODS Forty female Wistar rats (mean body weight: 200 g) were used for this study. An osteoporosis animal model was carried out by bilateral ovariectomy (OVX) in 20 animals. Ten weeks after OVX, bilateral fenestration defects were created at the buccal aspect of the first mandibular molar. Animals were randomly assigned to four groups of 10 animals per group: 1) control animals with unfilled periodontal defects; 2) control animals with EMD-treated defects; 3) OVX animals with unfilled defects; and 4) OVX animals with EMD-treated defects. The animals were euthanized 28 days later, and the percentage of defect fill and thickness of newly formed bone and cementum were assessed by histomorphometry and microcomputed tomography (micro-CT) analysis. The number of osteoclasts was determined by tartrate-resistant acid phosphatase (TRAP), and angiogenesis was assessed by analyzing formation of blood vessels. RESULTS OVX animals demonstrated significantly reduced bone volume in unfilled defects compared with control defects (18.9% for OVX animals versus 27.2% for control animals) as assessed by micro-CT. The addition of EMD in both OVX and control animals resulted in significantly higher bone density (52.4% and 69.2%, respectively) and bone width (134 versus 165μm) compared with untreated defects; however, the healing in OVX animals treated with EMD was significantly lower than that in control animals treated with EMD. Animals treated with EMD also demonstrated significantly higher cementum formation in both control and OVX animals. The number of TRAP-positive osteoclasts did not vary between untreated and EMD-treated animals; however, a significant increase was observed in all OVX animals. The number of blood vessels and percentage of new vessel formation was significantly higher in EMD-treated samples. CONCLUSIONS The results from the present study suggest that: 1) an osteoporotic phenotype may decrease periodontal regeneration; and 2) EMD may support greater periodontal regeneration in patients suffering from the disease. Additional clinical studies are necessary to fully elucidate the possible beneficial effect of EMD for periodontal regeneration in patients suffering from osteoporosis.
Resumo:
OBJECTIVES To evaluate possible differences in periodontal inflammatory, microbiological and clinical parameters between women with preterm premature rupture of membranes (PPROM) and controls with uncomplicated pregnancies. MATERIALS AND METHODS Fifty-six women (32 test (PPROM) and 24 controls (uncomplicated pregnancies)) were examined at three time-points (T1: gestational weeks 20-35, T2: within 48 h after parturition, T3: 4-6 weeks after parturition). The examinations included assessment of the Periodontal Screening Index, collection of gingival crevicular fluid (GCF) and subgingival as well as vaginal bacterial sampling. RESULTS Periodontal inflammation was found to be higher in the test compared with the control group (p < 0.05) and decreased over time in both groups (p < 0.05). Microbiological outcomes showed no intergroup differences (p > 0.05) in prevalence of bacteria, but a decrease in subgingival periodontopathogens from T1 to T2 in the test group (p < 0.05) was observed. Interleukin (IL)-1β levels in GCF at T2 were not different between groups (p > 0.05). In women with PPROM, GCF levels of IL-8 (p < 0.05) and C-reactive protein (p < 0.05) were lower and IL-10 levels higher (p < 0.05) compared with controls. CONCLUSIONS Periodontal inflammation is elevated during pregnancy and seems to be more pronounced in women with PPROM. CLINICAL RELEVANCE The findings of the present study revealed an association between periodontal inflammation and PPROM, thus emphasizing the importance of optimizing self-performed oral hygiene in pregnant women.
Resumo:
BACKGROUND: Demineralized bone matrix (DBM) is used for the treatment of osseous defects. Conditioned medium from native bone chips can activate transforming growth factor (TGF)-β signaling in mesenchymal cells. The aim of the study was to determine whether processing of native bone into DBM affects the activity of the conditioned medium. METHODS: Porcine cortical bone blocks were subjected to defatting, different concentrations of hydrochloric acid and various temperatures. DBM was lyophilized, ground, and placed into culture medium. Human gingiva and periodontal fibroblasts were exposed to the respective conditioned medium (DBCM). Changes in the expression of TGF-β target genes were determined. RESULTS: DBCM altered the expression of TGF-β target genes, e.g., adrenomedullin, pentraxin 3, KN Motif And Ankyrin Repeat Domains 4, interleukin 11, NADPH oxidase 4, and BTB (POZ) Domain Containing 11, by at least five-fold. The response was observed in fibroblasts from both sources. Defatting lowered the activity of DBCM. The TGF-β receptor type I kinase inhibitor SB431542, but not the inhibitor of bone morphogenetic protein receptor dorsomorphin, blocked the effects of DBCM on gene expression. Moreover, conditioned medium obtained from commercial human DBM modulated the expression of TGF-β target genes. CONCLUSION: The findings suggest that the conditioned medium from demineralized bone matrix can activate TGF-β signaling in oral fibroblasts. KEYWORDS: TGF-beta superfamily proteins; bone; bone substitutes; bone transplantation; conditioned media; freeze drying