972 resultados para Periodic boundary conditions
Resumo:
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PE-symmetric wavefunctions defined on a contour in the complex plane. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper reports a free vibration analysis of thick plates with rounded corners subject to a free, simply-supported or clamped boundary condition. The plate perimeter is defined by a super elliptic function with a power defining the shape ranging from an ellipse to a rectangle. To incorporate transverse shear deformation, the Reddy third-order plate theory is employed. The energy integrals incorporating shear deformation and rotary inertia are formulated and the p-Ritz procedures are used to derive the governing eigenvalue equation. Numerical examples for plates with different shapes and boundary conditions are solved and their frequency parameters, where possible, are compared with known results. Parametric studies are carried out to show the sensitivities of frequency parameters by varying the geometry, fibre stacking sequence, and boundary condition. (C) 1999 Academic Press.
Resumo:
Many instances of differential diffusion, i e, different species having different turbulent diffusion coefficients in the same flow, can be explained as a finite mixing length effect. That is, in a simple mixing length scenario, the turbulent diffusion coefficient has the form 1 ( m )2 m m c l K w l OL = + where, wm is the mixing velocity, lm the mixing length and Lc the overall distribution scale for a particular species. The first term represents the familiar gradient diffusion while the second term becomes important when lm/Lc is finite. This second term shows that different species will have different diffusion coefficients if they have different overall distribution scales. Such different Lcs may come about due to different boundary conditions and different intrinsic properties (molecular diffusivity, settling velocity etc) for different species. For momentum transfer in turbulent oscillatory boundary layers the second term is imaginary and explains observed phase leads of shear stresses ahead of velocity gradients.
Resumo:
Finite element analysis (FEA) of nonlinear problems in solid mechanics is a time consuming process, but it can deal rigorously with the problems of both geometric, contact and material nonlinearity that occur in roll forming. The simulation time limits the application of nonlinear FEA to these problems in industrial practice, so that most applications of nonlinear FEA are in theoretical studies and engineering consulting or troubleshooting. Instead, quick methods based on a global assumption of the deformed shape have been used by the roll-forming industry. These approaches are of limited accuracy. This paper proposes a new form-finding method - a relaxation method to solve the nonlinear problem of predicting the deformed shape due to plastic deformation in roll forming. This method involves applying a small perturbation to each discrete node in order to update the local displacement field, while minimizing plastic work. This is iteratively applied to update the positions of all nodes. As the method assumes a local displacement field, the strain and stress components at each node are calculated explicitly. Continued perturbation of nodes leads to optimisation of the displacement field. Another important feature of this paper is a new approach to consideration of strain history. For a stable and continuous process such as rolling and roll forming, the strain history of a point is represented spatially by the states at a row of nodes leading in the direction of rolling to the current one. Therefore the increment of the strain components and the work-increment of a point can be found without moving the object forward. Using this method we can find the solution for rolling or roll forming in just one step. This method is expected to be faster than commercial finite element packages by eliminating repeated solution of large sets of simultaneous equations and the need to update boundary conditions that represent the rolls.
Resumo:
Le pitture intumescenti sono utilizzate come protettivi passivi antincendio nel settore delle costruzioni. In particolare sono utilizzate per aumentare la resistenza al fuoco di elementi in acciaio. Le proprietà termiche di questi rivestimenti sono spesso sconosciute o difficili da stimare per via del fatto che variano notevolmente durante il processo di espansione che subisce l’intumescente quando esposto al calore di un incendio. Per questa ragione la validazione della resistenza al fuoco di un rivestimento presente in commercio si basa su metodi costosi economicamente e come tempi di esecuzione nel quale ciascuna trave e colonna rivestita di protettivo deve essere testata una alla volta attraverso il test di resistenza al fuoco della curva cellulosica. In questo lavoro di tesi adottando invece un approccio basato sulla modellazione termica del rivestimento intumescente si ottiene un aiuto nella semplificazione della procedura di test ed un supporto nella progettazione della resistenza al fuoco delle strutture. Il tratto di unione nei vari passaggi della presente tesi è stata la metodologia di stima del comportamento termico sconosciuto, tale metodologia di stima è la “Inverse Parameter Estimation”. Nella prima fase vi è stata la caratterizzazione chimico fisica della vernice per mezzo di differenti apparecchiature come la DSC, la TGA e l’FT-IR che ci hanno permesso di ottenere la composizione qualitativa e le temperature a cui avvengono i principali processi chimici e fisici che subisce la pittura come anche le entalpie legate a questi eventi. Nella seconda fase si è proceduto alla caratterizzazione termica delle pitture al fine di ottenerne il valore di conduttività termica equivalente. A tale scopo si sono prima utilizzate le temperature dell’acciaio di prove termiche alla fornace con riscaldamento secondo lo standard ISO-834 e successivamente per meglio definire le condizioni al contorno si è presa come fonte di calore un cono calorimetrico in cui la misura della temperatura avveniva direttamente nello spessore del’intumescente. I valori di conduttività ottenuti sono risultati congruenti con la letteratura scientifica e hanno mostrato la dipendenza della stessa dalla temperatura, mentre si è mostrata poco variante rispetto allo spessore di vernice deposto ed alla geometria di campione utilizzato.
Resumo:
This thesis concerns mixed flows (which are characterized by the simultaneous occurrence of free-surface and pressurized flow in sewers, tunnels, culverts or under bridges), and contributes to the improvement of the existing numerical tools for modelling these phenomena. The classic Preissmann slot approach is selected due to its simplicity and capability of predicting results comparable to those of a more recent and complex two-equation model, as shown here with reference to a laboratory test case. In order to enhance the computational efficiency, a local time stepping strategy is implemented in a shock-capturing Godunov-type finite volume numerical scheme for the integration of the de Saint-Venant equations. The results of different numerical tests show that local time stepping reduces run time significantly (between −29% and −85% CPU time for the test cases considered) compared to the conventional global time stepping, especially when only a small region of the flow field is surcharged, while solution accuracy and mass conservation are not impaired. The second part of this thesis is devoted to the modelling of the hydraulic effects of potentially pressurized structures, such as bridges and culverts, inserted in open channel domains. To this aim, a two-dimensional mixed flow model is developed first. The classic conservative formulation of the 2D shallow water equations for free-surface flow is adapted by assuming that two fictitious vertical slots, normally intersecting, are added on the ceiling of each integration element. Numerical results show that this schematization is suitable for the prediction of 2D flooding phenomena in which the pressurization of crossing structures can be expected. Given that the Preissmann model does not allow for the possibility of bridge overtopping, a one-dimensional model is also presented in this thesis to handle this particular condition. The flows below and above the deck are considered as parallel, and linked to the upstream and downstream reaches of the channel by introducing suitable internal boundary conditions. The comparison with experimental data and with the results of HEC-RAS simulations shows that the proposed model can be a useful and effective tool for predicting overtopping and backwater effects induced by the presence of bridges and culverts.
Resumo:
Aquifers are a vital water resource whose quality characteristics must be safeguarded or, if damaged, restored. The extent and complexity of aquifer contamination is related to characteristics of the porous medium, the influence of boundary conditions, and the biological, chemical and physical processes. After the nineties, the efforts of the scientists have been increased exponentially in order to find an efficient way for estimating the hydraulic parameters of the aquifers, and thus, recover the contaminant source position and its release history. To simplify and understand the influence of these various factors on aquifer phenomena, it is common for researchers to use numerical and controlled experiments. This work presents some of these methods, applying and comparing them on data collected during laboratory, field and numerical tests. The work is structured in four parts which present the results and the conclusions of the specific objectives.
Resumo:
The investigation of insulation debris transport, sedimentation, penetration into the reactor core and head loss build up becomes important to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during loss of coolant accidents. Research projects are being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Helmholtz-Zentrum Dresden-Rossendorf. The projects include experimental investigations of different processes and phenomena of insulation debris in coolant flow and the development of CFD models. Generic complex experiments serve for building up a data base for the validation of models for single effects and their coupling in CFD codes. This paper includes the description of the experimental facility for complex generic experiments (ZSW), an overview about experimental boundary conditions and results for upstream and down-stream phenomena as well as for the long-time behaviour due to corrosive processes. © Carl Hanser Verlag, München.
Resumo:
Methods for understanding classical disordered spin systems with interactions conforming to some idealized graphical structure are well developed. The equilibrium properties of the Sherrington-Kirkpatrick model, which has a densely connected structure, have become well understood. Many features generalize to sparse Erdös- Rényi graph structures above the percolation threshold and to Bethe lattices when appropriate boundary conditions apply. In this paper, we consider spin states subject to a combination of sparse strong interactions with weak dense interactions, which we term a composite model. The equilibrium properties are examined through the replica method, with exact analysis of the high-temperature paramagnetic, spin-glass, and ferromagnetic phases by perturbative schemes. We present results of replica symmetric variational approximations, where perturbative approaches fail at lower temperature. Results demonstrate re-entrant behaviors from spin glass to ferromagnetic phases as temperature is lowered, including transitions from replica symmetry broken to replica symmetric phases. The nature of high-temperature transitions is found to be sensitive to the connectivity profile in the sparse subgraph, with regular connectivity a discontinuous transition from the paramagnetic to ferromagnetic phases is apparent.
Resumo:
The first part of the thesis compares Roth's method with other methods, in particular the method of separation of variables and the finite cosine transform method, for solving certain elliptic partial differential equations arising in practice. In particular we consider the solution of steady state problems associated with insulated conductors in rectangular slots. Roth's method has two main disadvantages namely the slow rate of convergence of the double Fourier series and the restrictive form of the allowable boundary conditions. A combined Roth-separation of variables method is derived to remove the restrictions on the form of the boundary conditions and various Chebyshev approximations are used to try to improve the rate of convergence of the series. All the techniques are then applied to the Neumann problem arising from balanced rectangular windings in a transformer window. Roth's method is then extended to deal with problems other than those resulting from static fields. First we consider a rectangular insulated conductor in a rectangular slot when the current is varying sinusoidally with time. An approximate method is also developed and compared with the exact method.The approximation is then used to consider the problem of an insulated conductor in a slot facing an air gap. We also consider the exact method applied to the determination of the eddy-current loss produced in an isolated rectangular conductor by a transverse magnetic field varying sinusoidally with time. The results obtained using Roth's method are critically compared with those obtained by other authors using different methods. The final part of the thesis investigates further the application of Chebyshdev methods to the solution of elliptic partial differential equations; an area where Chebyshev approximations have rarely been used. A poisson equation with a polynomial term is treated first followed by a slot problem in cylindrical geometry.
Resumo:
Whilst a consistent link between the adoption of human resource management (HRM) practices by organisations and their performance has been confirmed by numerous studies, there is a need for greater understanding of why such effects occur. Recently, the attention of researchers has shifted towards understanding the so-called ‘black box’ linking HRM and business performance. This study focuses on this area of research by testing processes through which HRM may affect performance, in particular the process of HR implementation, mediation mechanisms, and fit with internal and external boundary conditions. This research was based on a sample of 136 Post Office branches in the UK and investigated the role of HR implementation, employee attitudes and competitive environment. The study revealed that HR implementation, a climate for service, job satisfaction and effective organisational commitment predicted independent measures of economic and service performance in branches. Employee attitudes moderated the relationship between implemented HRM and service performance, and both job satisfaction and commitment were found to mediate relationships between a climate for service and service performance. Finally, relative levels of competition faced by branches moderated the relationship between employee attitudes and sales. The findings demonstrate how the process of HR implementation, interactions with employee attitudes and moderation by external competition all influence the impact of HR systems on service and economic performance outcomes. These results illustrate the need for greater attention to processes of internal and external fit within HRM research in order to develop theory relating to why HR systems affect performance.
Resumo:
This thesis describes an analytical and experimental study to determine the mechanical characteristics of the pump mounting, bell housing type. For numerical purposes, the mount was modelled as a thin circular cylindrical shell with cutouts, stiffened with rings and stringers; the boundary conditions were considered to be either clamped-free or clamped-supporting rigid heavy mass. The theoretical study was concerned with both the static response and the free vibration characteristics of the mount. The approach was based on the Rayleigh-Ritz approximation technique using beam characteristic (axial) and trigonometric (Circumferential) functions in the displacement series, in association with the Love - Timoshenko thin shell theory. Studies were carried out to determine the effect of the supported heavy mass on the static response, frequencies and mode shapes; in addition, the effects of stringers, rings and cutouts on vibration characteristics were investigated. The static and dynamic formulations were both implemented on the Hewlett Packard 9845 computer. The experimental study was conducted to evaluate the results of the natural frequencies and mode shapes, predicted numerically. In the experimental part, a digital computer was used as an experiment controller, which allowed accurate and quick results. The following observations were made: 1. Good agreements were obtained with the results of other investigators. 2. Satisfactory agreement was achieved between the theoretical and experimental results. 3. Rings coupled the axial modal functions of the plain cylinder and tended to increase frequencies, except for the torsion modes where frequencies were reduced. Stringers coupled the circumferential modal functions and tended to decrease frequencies. The effect of rings was stronger than that of stringers. 4. Cutouts tended to reduce frequencies; in general, but this depends on the location of the cutouts; if they are near the free edge then an increase in frequencies is obtained. Cutouts coupled both axial and circumferential modal functions. 5. The supported heavy mass had similar effects to those of the rings, but in an exaggerated manner, particularly in the reduction of torsion frequencies. 6. The method of analysis was found to be a convenient analytical tool for estimating the overall behaviour of the shell with cutouts.
Resumo:
Glass reinforced plastic (GRP) is now an established material for the fabrication of sonar windows. Its good mechanical strength, light weight, resistance to corrosion and acoustic transparency, are all properties which fit it for this application. This thesis describes a study, undertaken at the Royal Naval Engineering College, Plymouth, into the mechanical behaviour of a circular cylindrical sonar panel. This particular type of panel would be used to cover a flank array sonar in a ship or submarine. The case considered is that of a panel with all of its edges mechanically clamped and subject to pressure loading on its convex surface. A comprehensive program of testing, to determine the orthotropic elastic properties of the laminated composite panel material is described, together with a series of pressure tests on 1:5 scale sonar panels. These pressure tests were carried out in a purpose designed test rig, using air pressure to provide simulated hydrostatic and hydrodynamic loading. Details of all instrumentation used in the experimental work are given in the thesis. The experimental results from the panel testing are compared with predictions of panel behaviour obtained from both the Galerkin solution of Flugge's cylindrical shell equations (orthotropic case), and finite element modelling of the panels using PAFEC. A variety of appropriate panel boundary conditions are considered in each case. A parametric study, intended to be of use as a preliminary design tool, and based on the above Galerkin solution, is also presented. This parametric study considers cases of boundary conditions, material properties, and panel geometry, outside of those investigated in the experimental work Final conclusions are drawn and recommendations made regarding possible improvements to the procedures for design, manufacture and fixing of sonar panels in the Royal Navy.
Resumo:
The work described in this thesis is the development of an ultrasonic tomogram to provide outlines of cross-sections of the ulna in vivo. This instrument, used in conjunction with X-ray densitometry previously developed in this department, would provide actual bone mineral density to a high resolution. It was hoped that the accuracy of the plot obtained from the tomogram would exceed that of existing ultrasonic techniques by about five times. Repeat measurements with these instruments to follow bone mineral changes would involve very low X-ray doses. A theoretical study has been made of acoustic diffraction, using a geometrical transform applicable to the integration of three different Green's functions, for axisymmetric systems. This has involved the derivation of one of these in a form amenable to computation. It is considered that this function fits the boundary conditions occurring in medical ultrasonography more closely than those used previously. A three dimensional plot of the pressure field using this function has been made for a ring transducer, in addition to that for disc transducers using all three functions. It has been shown how the theory may be extended to investigate the nature and magnitude of the particle velocity, at any point in the field, for the three functions mentioned. From this study. a concept of diffraction fronts has been developed, which has made it possible to determine energy flow also in a diffracting system. Intensity has been displayed in a manner similar to that used for pressure. Plots have been made of diffraction fronts and energy flow direction lines.
Resumo:
The present dissertation is concerned with the determination of the magnetic field distribution in ma[.rnetic electron lenses by means of the finite element method. In the differential form of this method a Poisson type equation is solved by numerical methods over a finite boundary. Previous methods of adapting this procedure to the requirements of digital computers have restricted its use to computers of extremely large core size. It is shown that by reformulating the boundary conditions, a considerable reduction in core store can be achieved for a given accuracy of field distribution. The magnetic field distribution of a lens may also be calculated by the integral form of the finite element rnethod. This eliminates boundary problems mentioned but introduces other difficulties. After a careful analysis of both methods it has proved possible to combine the advantages of both in a .new approach to the problem which may be called the 'differential-integral' finite element method. The application of this method to the determination of the magnetic field distribution of some new types of magnetic lenses is described. In the course of the work considerable re-programming of standard programs was necessary in order to reduce the core store requirements to a minimum.