914 resultados para Paving and pluvial drainage networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Man'en kaisei O-Edo oezu, Takai Ranzan zu. It was published by Okadaya Kashichi in Man'en gannen in 1860. Scale [ca. 1:10,700]. This layer is image 2 of 4 total images of the four sheet source map, representing the southeast portion of the map. Covers Tokyo, Japan. Map in Japanese.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Tokyo Universal Transverse Mercator (UTM) Zone 54N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads and stations, drainage, built-up areas and selected buildings, names of landowners, parks, and more. Shows main temples, shrines, and points of interest pictorially.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Man'en kaisei O-Edo oezu, Takai Ranzan zu. It was published by Okadaya Kashichi in Man'en gannen in 1860. Scale [ca. 1:10,700]. This layer is image 1 of 4 total images of the four sheet source map, representing the northwest portion of the map. Covers Tokyo, Japan. Map in Japanese.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Tokyo Universal Transverse Mercator (UTM) Zone 54N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads and stations, drainage, built-up areas and selected buildings, names of landowners, parks, and more. Shows main temples, shrines, and points of interest pictorially.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Man'en kaisei O-Edo oezu, Takai Ranzan zu. It was published by Okadaya Kashichi in Man'en gannen in 1860. Scale [ca. 1:10,700]. This layer is image 3 of 4 total images of the four sheet source map, representing the northeast portion of the map. Covers Tokyo, Japan. Map in Japanese.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Tokyo Universal Transverse Mercator (UTM) Zone 54N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads and stations, drainage, built-up areas and selected buildings, names of landowners, parks, and more. Shows main temples, shrines, and points of interest pictorially.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Man'en kaisei O-Edo oezu, Takai Ranzan zu. It was published by Okadaya Kashichi in Man'en gannen in 1860. Scale [ca. 1:10,700]. This layer is image 4 of 4 total images of the four sheet source map, representing the southwest portion of the map. Covers Tokyo, Japan. Map in Japanese.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Tokyo Universal Transverse Mercator (UTM) Zone 54N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads and stations, drainage, built-up areas and selected buildings, names of landowners, parks, and more. Shows main temples, shrines, and points of interest pictorially.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Noveau plan topographique de la ville Lyon : comprenant et indiquant toutes les améliorations en projet et en voie d'exécution, par l'agence Fournier, Lyon. It was published by Fournier ca. 1910. Scale [ca. 1:10,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the European Datum 1950, Universal Transverse Mercator (UTM) Zone 31N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads and stations, drainage, built-up areas and selected buildings, fortification, property boundaries, parks, and more. Relief shown by hachures.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Oversigtskaart over grundvandstandens höjde paa Kjöbenhavns : og Frederiksbergs grund ved laveste iagttagne höjde den 16 de Juli 1883. It was published by Hoffensberg & Trap[s] Establ. in 1883. Scale [ca. 1:5,022]. Covers Copenhagen, Denmark. Map in Danish. The image inside the map neatline is georeferenced to the surface of the earth and fit to the European Datum 1950, Universal Transverse Mercator (UTM) Zone 33N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as groundwater levels, roads, railroads and stations, drainage, built-up areas and selected buildings, fortification, docks, wharves, parks, and more. Relief shown by contours and spot heights. Depths shown by soundings.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Kort over København : med postdistrikter i farver indlagt af 'det Danske postvaesen' samt specialkort over sporvejslinierne. It was published by Politikens Forlag in 1900. Scale [ca. 1:9,434]. Covers Copenhagen, Denmark. Map in Danish. The image inside the map neatline is georeferenced to the surface of the earth and fit to the European Datum 1950, Universal Transverse Mercator (UTM) Zone 33N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads and stations, drainage, built-up areas and selected buildings, fortification, district boundaries, docks, wharves, parks, and more.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Descriptive map, shewing the Treaty limits round Yokohama : including the Province of Sagami & portions of Kai, Idzu, Musasi & Suraga, compiled and drawn by Lieut. A.G.S. Hawes, 1865-67. It was published by James Wyld in 1868. Scale [ca. 1:57,217]. Covers the Yokohama-shi & Kanagawa-ken region, Japan. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Tokyo Universal Transverse Mercator (UTM) Zone 54N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as cities and towns, roads, railroads and stations, drainage, built-up areas and selected buildings, fortification, district and province boundaries, temples, baths, ruins, battle sites, and more. Relief shown by shading. Includes notes.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: O-Edo ezu. It was published by Suharaya Mohe zohan in Ansei 6 [1859]. Scale [ca. 1:14,000]. Covers Tokyo, Japan. Map in Japanese.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Tokyo Universal Transverse Mercator (UTM) Zone 54N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads and stations, drainage, built-up areas and selected buildings, names of landowners, parks, and more. Shows main shrines and temples pictorially. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary. For more than two decades, the development of renewable energy sources (RES) has been an important aim of EU energy policy. It accelerated with the adoption of a 1997 White Paper and the setting a decade later of a 20% renewable energy target, to be reached by 2020. The EU counts on renewable energy for multiple purposes: to diversify its energy supply; to increase its security of supply; and to create new industries, jobs, economic growth and export opportunities, while at the same time reducing greenhouse gas (GHG) emissions. Many expectations rest on its development. Fossil fuels have been critical to the development of industrial nations, including EU Member States, which are now deeply reliant upon coal, oil and gas for nearly every aspect of their existence. Faced with some hard truths, however, the Member States have begun to shelve fossil fuel. These hard truths are as follows: firstly, fossil fuels are a finite resource, sometimes difficult to extract. This means that, at some point, fossil fuels are going to be more difficult to access in Europe or too expensive to use.1 The problem is that you cannot just stop using fossil fuels when they become too expensive; the existing infrastructure is profoundly reliant on fossil fuels. It is thus almost normal that a fierce resistance to change exists. Secondly, fossil fuels contribute to climate change. They emit GHG, which contribute greatly to climate change. As a consequence, their use needs to be drastically reduced. Thirdly, Member States are currently suffering a decline in their own fossil fuel production. This increases their dependence on increasingly costly fossil fuel imports from increasingly unstable countries. This problem is compounded by global developments: the growing share of emerging economies in global energy demand (in particular China and India but also the Middle East) and the development of unconventional oil and gas production in the United States. All these elements endanger the competitiveness of Member States’ economies and their security of supply. Therefore, new indigenous sources of energy and a diversification of energy suppliers and routes to convey energy need to be found. To solve all these challenges, in 2008 the EU put in place a strategy based on three objectives: sustainability (reduction of GHG), competitiveness and security of supply. The adoption of a renewable energy policy was considered essential for reaching these three strategic objectives. The adoption of the 20% renewable energy target has undeniably had a positive effect in the EU on the growth in renewables, with the result that renewable energy sources are steadily increasing their presence in the EU energy mix. They are now, it can be said, an integral part of the EU energy system. However, the necessity of reaching this 20% renewable energy target in 2020, combined with other circumstances, has also engendered in many Member States a certain number of difficulties, creating uncertainties for investors and postponing benefits for consumers. The electricity sector is the clearest example of this downside. Subsidies have become extremely abundant and vary from one Member State to another, compromising both fair competition and single market. Networks encountered many difficulties to develop and adapt. With technological progress these subsidies have also become quite excessive. The growing impact of renewable electricity fluctuations has made some traditional power plants unprofitable and created disincentives for new investments. The EU does clearly need to reassess its strategy. If it repeats the 2008 measures it will risk to provoke increased instability and costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermokarst lakes and basins are major components of ice-rich permafrost landscapes in East Siberian coastal lowlands and are regarded as indicators of regional climatic changes. We investigate the temporal and spatial dynamics of a 7.5 km**2, partly drained thermokarst basin (alas) using field investigations, remote sensing, Geographic Information Systems (GIS), and sediment analyses. The evolution of the thermokarst basin proceeded in two phases. The first phase started at the Pleistocene/Holocene transition (13 to 12 ka BP) with the initiation of a primary thermokarst lake on the Ice Complex surface. The lake expanded and persisted throughout the early Holocene before it drained abruptly about 5.7 ka BP, thereby creating a > 20 m deep alas with residual lakes. The second phase (5.7 ka BP to present) is characterized by alternating stages of lower and higher thermokarst intensity within the alas that were mainly controlled by local hydrological and relief conditions and accompanied by permafrost aggradation and degradation. It included diverse concurrent processes like lake expansion and stepwise drainage, polygonal ice-wedge growth, and the formation of drainage channels and a pingo, which occurred in different parts of the alas. This more dynamic thermokarst evolution resulted in a complex modern thermokarst landscape. However, on the regional scale, the changes during the second evolutionary phase after drainage of the initial thermokarst lakes were less intense than the early Holocene extensive thermokarst development in East Siberian coastal lowlands as a result of a significant regional change to warmer and wetter climate conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Title from cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To promote the range of interventions for building family/general practice (family medicine) research capacity, we describe successful international examples. Such examples of interventions that build research capacity focus on diseases and illness research, as well as process research; monitor the output of research in family/general practice (family medicine); increase the number of family medicine research journals; encourage and enable research skills acquisition (including making it part of professional training); strengthen the academic base; and promote research networks and collaborations. The responsibility for these interventions lies with the government, colleges and academies, and universities. There are exciting and varied methods of building research capacity in family medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Promiscuous human leukocyte antigen (HLA) binding peptides are ideal targets for vaccine development. Existing computational models for prediction of promiscuous peptides used hidden Markov models and artificial neural networks as prediction algorithms. We report a system based on support vector machines that outperforms previously published methods. Preliminary testing showed that it can predict peptides binding to HLA-A2 and -A3 super-type molecules with excellent accuracy, even for molecules where no binding data are currently available.