900 resultados para Pathogen Pseudomonas-syringae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibiotic resistance has emerged as a severe problem in hospital-acquired infectious disease. The Gram-negative bacterium Pseudomonas aeruginosa is found to cause secondary infection in immune-compromised patients. Unfortunately, it is resistant to virtually all β-lactam antibiotics such as penicillin, cephalosporin and others. Researchers are seeking for new compounds to treat several antibiotic-resistant bacterial strains. Artemisia plant extracts are commonly used for their therapeutic properties by natives throughout dry regions of North and South America. Here, they are administered as an alternative medicine for stomach problems and other complex health issues. In this study, the antimicrobial effects of plant extracts from several Artemisia species as well as compounds dehydroleucodine and dehydroparishin-B (sesquiterpenes derived specifically from A. douglasiana) were used as treatments against the pathogenicity effects of P. aeruginosa. Results showed that both compounds effectively inhibit the secretion of LasB elastase, biofilm formation and type III secretion, but fail to control LasA protease. This is a significant observation because these virulent factors are crucial in establishing P.aeruginosa infection. The results from this study signify a plausible role for future alternative therapy in the biomedical field, which recommends DhL and DhP can be studied as key compounds against bacterial infections of Pseudomonas aeruginosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background In Enterobacteriaceae, β-lactam antibiotic resistance involves murein recycling intermediates. Murein recycling is a complex process with discrete steps taking place in the periplasm and the cytoplasm. The AmpG permease is critical to this process as it transports N-acetylglucosamine anhydrous N-acetylmuramyl peptides across the inner membrane. In Pseudomonadaceae, this intrinsic mechanism remains to be elucidated. Since the mechanism involves two cellular compartments, the characterization of transporters is crucial to establish the link. Results Pseudomonas aeruginosa PAO1 has two ampG paralogs, PA4218 (ampP) and PA4393 (ampG). Topology analysis using β-galactosidase and alkaline phosphatase fusions indicates ampP andampG encode proteins which possess 10 and 14 transmembrane helices, respectively, that could potentially transport substrates. Both ampP and ampG are required for maximum expression of β-lactamase, but complementation and kinetic experiments suggest they act independently to play different roles. Mutation of ampG affects resistance to a subset of β-lactam antibiotics. Low-levels of β-lactamase induction occur independently of either ampP or ampG. Both ampG and ampP are the second members of two independent two-gene operons. Analysis of the ampG and ampPoperon expression using β-galactosidase transcriptional fusions showed that in PAO1, ampGoperon expression is β-lactam and ampR-independent, while ampP operon expression is β-lactam and ampR-dependent. β-lactam-dependent expression of the ampP operon and independent expression of the ampG operon is also dependent upon ampP. Conclusions In P. aeruginosa, β-lactamase induction occurs in at least three ways, induction at low β-lactam concentrations by an as yet uncharacterized pathway, at intermediate concentrations by an ampPand ampG dependent pathway, and at high concentrations where although both ampP and ampGplay a role, ampG may be of greater importance. Both ampP and ampG are required for maximum induction. Similar to ampC, ampP expression is inducible in an ampR-dependent manner. Importantly, ampP expression is autoregulated and ampP also regulates expression of ampG. Both AmpG and AmpP have topologies consistent with functions in transport. Together, these data suggest that the mechanism of β-lactam resistance of P. aeruginosa is distinct from well characterized systems in Enterobacteriaceae and involves a highly complicated interaction between these putative permeases and known Amp proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human leukocyte antigen (HLA) complex is an extensively studied cluster of genes with immunoregulatory function. Pseudomonas aeruginosa is capable of infecting individuals with weakened immune systems, and is associated with a high mortality rate. Previous genetic studies of the HLA region have found correlations between bacterial infection and its effect on regulating HLA gene expressions to establish their infection. This project analyzes the expression of classical HLA loci (A, B, C, DR, DQ, DP) in human B cells and macrophage cells during the infection of virulent strains of P. aeruginosa. Cells were cultured and infected with different virulent live, and heat-killed strains of P. aeruginosa for different time periods. The mRNA was extracted and converted into cDNA followed by real-time quantitative PCR and data analysis. The Western Blot technique was used to identify the targeted protein’s cell surface expression. Infection with P. aeruginosa was found to inhibit the expression of HLA proteins. The PA14 strain inhibited expression of all targeted genes in all experiments. Infections with PA01 and PA103 showed different patterns depending on the incubation time and the targeted gene. These differences suggest that the three strains use various mechanisms to inhibit HLA protein expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomonas aeruginosa, a Gram-negative bacterium, an opportunistic pathogen that infects individuals suffering from reduced immunity or damaged tissue. The treatment of these infections has become a major problem due to its increasing antibiotic resistance. Many multi-drug resistant isolates of P. aeruginosa can thwart most antibiotic classes including ?- lactams, fluoroquinolones, and aminoglycosides. Its ability to combat ?-lactams is in part due to expression of AmpC, a major chromosomally encoded ?-lactamase. The expression of ampC is positively regulated by AmpR. Besides antibiotic resistance, AmpR is an important regulator of various factors that are required for establishing acute and chronic infections. Loss of ampR makes P. aeruginosa susceptible to ?-lactams and less virulent than the wild type. We hypothesize that AmpR is a potential therapeutic target. In the absence of new drugs in the pipeline, the aim of this study is to find an AmpR-specific inhibitor to assist and improve the use of currently available ?- lactam treatment. A small-molecule library from Torrey Pines Institute will be used in this study. Two reporter systems, lux and lacZ, fused to a PampC promotor will be used to assess AmpR activity. Positive hits will be those that inhibit 50% PampC activity in the presence of sub inhibitory concentration of imipenem, a ?- lactam. The top positive hits will be screened for their ability to cause human cell-cytotoxicity. The non-cytotoxic hits will be assessed for their ability to affect P. aeruginosa virulence and antibiotic resistance using various in vitro assays. Determination of potential AmpR inhibitors will prove to be useful in fighting off infections and may save countless patients suffering from these infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monoaromatic compounds are toxic substances present in petroleum derivades and used broadly in the chemical and petrochemical industries. Those compounds are continuously released into the environment, contaminating the soil and water sources, leading to the possible unfeasibility of those hydrous resources due to their highly carcinogenic and mutagenic potentiality, since even in low concentrations, the BTEX may cause serious health issues. Therefore, it is extremely important to develop and search for new methodologies that assist and enable the treatment of BTEX-contaminated matrix. The bioremediation consists on the utilization of microbial groups capable of degrading hydrocarbons, promoting mineralization, or in other words, the permanent destruction of residues, eliminating the risks of future contaminations. This work investigated the biodegradation kinetics of water-soluble monoaromatic compounds (benzene, toluene and ethylbenzene), based on the evaluation of its consummation by the Pseudomonas aeruginosa bacteria, for concentrations varying from 40 to 200 mg/L. To do so, the performances of Monod kinetic model for microbial growth were evaluated and the material balance equations for a batch operation were discretized and numerically solved by the fourth order Runge-Kutta method. The kinetic parameters obtained using the method of least squares as statistical criteria were coherent when compared to those obtained from the literature. They also showed that, the microorganism has greater affinity for ethylbenzene. That way, it was possible to observe that Monod model can predict the experimental data for the individual biodegradation of the BTEX substrates and it can be applied to the optimization of the biodegradation processes of toxic compounds for different types of bioreactors and for different operational conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monoaromatic compounds are toxic substances present in petroleum derivades and used broadly in the chemical and petrochemical industries. Those compounds are continuously released into the environment, contaminating the soil and water sources, leading to the possible unfeasibility of those hydrous resources due to their highly carcinogenic and mutagenic potentiality, since even in low concentrations, the BTEX may cause serious health issues. Therefore, it is extremely important to develop and search for new methodologies that assist and enable the treatment of BTEX-contaminated matrix. The bioremediation consists on the utilization of microbial groups capable of degrading hydrocarbons, promoting mineralization, or in other words, the permanent destruction of residues, eliminating the risks of future contaminations. This work investigated the biodegradation kinetics of water-soluble monoaromatic compounds (benzene, toluene and ethylbenzene), based on the evaluation of its consummation by the Pseudomonas aeruginosa bacteria, for concentrations varying from 40 to 200 mg/L. To do so, the performances of Monod kinetic model for microbial growth were evaluated and the material balance equations for a batch operation were discretized and numerically solved by the fourth order Runge-Kutta method. The kinetic parameters obtained using the method of least squares as statistical criteria were coherent when compared to those obtained from the literature. They also showed that, the microorganism has greater affinity for ethylbenzene. That way, it was possible to observe that Monod model can predict the experimental data for the individual biodegradation of the BTEX substrates and it can be applied to the optimization of the biodegradation processes of toxic compounds for different types of bioreactors and for different operational conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We would like to acknowledge Richard Paley, Tom Hill and Georgina Rimmer for their collaboration during brown trout infection challenges in CEFAS-Weymouth biosecurity facilities. Bartolomeo Gorgoglione, Stephen W. Feist and Nick G. H. Taylor were supported by a DEFRA grant (F1198).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryptococcus neoformans is an opportunistic fungal pathogen that causes significant disease worldwide. Even though this fungus has not evolved specifically to cause human disease, it has a remarkable ability to adapt to many different environments within its infected host. C. neoformans adapts by utilizing conserved eukaryotic and fungal-specific signaling pathways to sense and respond to stresses within the host. Upon infection, two of the most significant environmental changes this organism experiences are elevated temperature and high pH.

Conserved Rho and Ras family GTPases are central regulators of thermotolerance in C. neoformans. Many GTPases require prenylation to associate with cellular membranes and function properly. Using molecular genetic techniques, microscopy, and infection models, I demonstrated that the prenyltransferase, geranylgeranyl transferase I (GGTase I) is required for thermotolerance and pathogenesis. Using fluorescence microscopy, I found that only a subset of conserved GGTase I substrates requires this enzyme for membrane localization. Therefore, the C. neoformans GGTase I may recognize its substrate in a slightly different manner than other eukaryotic organisms.

The alkaline response transcription factor, Rim101, is a central regulator of stress-response genes important for adapting to the host environment. In particular, Rim101 regulates cell surface alterations involved in immune avoidance. In other fungi, Rim101 is activated by alkaline pH through a conserved signaling pathway, but this pathway had yet been characterized in C. neoformans. Using molecular genetic techniques, I identified and analyzed the conserved members of the Rim pathway. I found that it was only partially conserved in C. neoformans, missing the components that sense pH and initiate pathway activation. Using a genetic screen, I identified a novel Rim pathway component named Rra1. Structural prediction and genetic epistasis experiments suggest that Rra1 may serve as the Rim pathway pH sensor in C. neoformans and other related basidiomycete fungi.

To explore the relevance of Rim pathway signaling in the interaction of C neoformans with its host, I characterized the Rim101-regulated cell wall changes that prevent immune detection. Using HPLC, enzymatic degradation, and cell wall stains, I found that the rim101Δ mutation resulted in increased cell wall chitin exposure. In vitro co-culture assays demonstrated that increased chitin exposure is associated with enhanced activation of macrophages and dendritic cells. To further test this association, I demonstrated that other mutant strains with increased chitin exposure induce macrophage and dendritic cell responses similar to rim101Δ. We used primary macrophages from mutant mouse lines to demonstrate that members of both the Toll-like receptor and C-type lectin receptor families are involved in detecting strains with increased chitin exposure. Finally, in vivo immunological experiments demonstrated that the rim101Δ strain induced a global inflammatory immune response in infected mouse lungs, expanding upon our previous in vivo rim101Δ studies. These results demonstrate that cell wall organization largely determines how fungal cells are detected by the immune system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct secretion systems which deliver molecules from one cell to another have huge significance in shaping bacterial communities or in determining the outcome of bacterial associations with eukaryotic organisms. This work examines the roles of the Type III Secretion System (T3SS) and the Type VI Secretion System (T6SS) systems of Pseudomonas, a widespread genus including clinical pathogens and biocontrol strains. Bioinformatic analysis of T6SS phylogeny and associated gene content within Pseudomonas identified several T6SS phylogenetic groups, and linked T6SS components VgrG and Hcp encoded outside of T6SS gene loci with their cognate T6SS phylogenetic groups. Remarkably, such “orphan” vgrG and hcp genes were found to occur in diverse, horizontally transferred, operons often containing putative T6SS accessory components and effectors. The prevalence of a widespread superfamily of T6SS lipase effectors (Tle) was assessed in metagenomes from various environments. The abundance of the Tle superfamily and individual families varied between niches, suggesting there is niche specific selection and specialisation of Tle. Experimental work also discovered that P. fluorescens F113 uses the SPI-1 T3SS to avoid amoeboid grazing in mixed populations. This finding may represent a significant aspect of F113 rhizocompetence, and the rhizocompetence of other Rhizobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is split into three sections based on three different areas of research. In the first section, investigations into the α-alkylation of ketones using a novel chiral auxiliary is reported. This chiral auxiliary was synthesised containing a pyrrolidine ring in the chiral arm and was applied in the preparation of α-alkylated ketones which were obtained in up to 92% ee and up to 63% yield over two steps. Both 3-pentanone and propiophenone based ketones were used in the investigation with a variety of both alkyl and benzyl based electrophiles. The novel chiral auxiliary was also successful when applied to Michael and aldol reactions. A diamine precursor en route to the chiral auxiliary was also applied as an organocatalyst in a Michael reaction, with the product obtained in excellent enantioselectivity. In the second section, investigations into potential anti-quorum sensing molecules are reported. The bacteria Pseudomonas aeruginosa is an antibiotic-resistant pathogen that demonstrates cooperative behaviours and communicates using small chemical molecules in a process termed quorum sensing. A variety of C-3 analogues of the quorum sensing molecules used by P. aeruginosa were synthesised. Expanding upon previous research within the group, investigations were carried out into alternative protecting group strategies of 2-heptyl-4-(1H)- quinolone with the aim of improving the yields of products of cross-coupling reactions. In the third section, investigations into fluorination and trifluoromethylation of 2-pyrones, pyridones and quinolones is reported. The incorporation of a fluorine atom or a trifluoromethyl group into a molecule is important in pharmaceutical drug discovery programmes as it can lead to increased lipophilicity and bioavailability, however late-stage incorporation is rarely reported. Both direct fluorination and trifluoromethylation were attempted. Eight trifluoromethylated 2-pyrones, five trifluoromethylated 2-pyridones and a trifluoromethylated 2-quinolone were obtained in a late-stage synthesis from their respective iodinated precursors using methyl fluorosulfonyldifluoroacetate as a trifluoromethylating reagent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of Polyhydroxyalkanoates (PHAs) by Pseudomonas mendocina, using different vegetable oils such as, coconut oil, groundnut oil, corn oil and olive oil, as the sole carbon source was investigated for the first time. The PHA yield obtained was compared with that obtained during the production of PHAs using sodium octanoate as the sole carbon source. The fermentation profiles at shaken flask and bioreactor levels revealed that vegetable oils supported the growth of Pseudomonas mendocina and PHA accumulation in this organism. Moreover, when vegetable oil (coconut oil) was used as the sole carbon source, fermentation profiles showed better growth and polymer production as compared to conditions when sodium octanoate was used as the carbon source. In addition, comparison of PHA accumulation at shaken flask and fermenter level confirmed the higher PHA yield at shaken flask level production. The highest cell mass found using sodium octanoate was 1.8 g/L, whereas cell mass as high as 5.1 g/L was observed when coconut oil was used as the feedstock at flask level production. Moreover, the maximum PHA yield of 60.5% dry cell weight (dcw) was achieved at shaken flask level using coconut oil as compared to the PHA yield of 35.1% dcw obtained using sodium octanoate as the sole carbon source. Characterisations of the chemical, physical, mechanical, surface and biocompatibility properties of the polymers produced have been carried out by performing different analyses as described in the second chapter of this study. Chemical analysis using GC and FTIR investigations showed medium chain length (MCL) PHA production in all conditions. GC-MS analysis revealed a unique terpolymer production, containing 3-hydroxyoctanoic acid, 3-hydroxydecanoic acid and 3-hydroxydodecanoic acid when coconut oil, groundnut oil, olive oil, and corn oil were used as the carbon source. Whereas production of the homopolymer containing 3-hydroxyoctanoic acid was observed when sodium octanoate was used as the carbon source. MCL-PHAs produced in this study using sodium octanoate, coconut oil, and olive oil exhibited melting transitions, indicating that each of the PHA was crystalline or semi-crystalline polymer. In contrast, the thermal properties of PHAs produced from groundnut and corn oils showed no melting transition, indicating that they were completely amorphous or semi-crystalline, which was also confirmed by the X-Ray Diffraction (XRD) results obtained in this study. Mechanical analysis of the polymers produced showed higher stiffness of the polymer produced from coconut oil than the polymer from sodium octanoate. Surface characterisation of the polymers using Scanning Electron Microscopy (SEM) revealed a rough surface topography and surface contact angle measurement revealed their hydrophobic nature. Moreover, to investigate the potential applicability of the produced polymers as the scaffold materials for dental pulp regeneration, multipotent human Mesenchymal stem cells (hMSCs) were cultured onto the polymer films. Results indicated that these polymers are not cytotoxic towards the hMSCs and could support their attachment and proliferation. Highest cell growth was observed on the polymer samples produced from corn oil, followed by the polymer produced using coconut oil. In conclusion, this work established, for the first time, that vegetable oils are a good economical source of carbon for production of MCL-PHA copolymers effectively by Pseudomonas mendocina. Moreover, biocompatibility studies suggest that the produced polymers may have potential for dental tissue engineering application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of emerging RNA viruses is hampered by the high mutation and replication rates that enable these viruses to operate as a quasispecies. Declining honey bee populations have been attributed to the ectoparasitic mite Varroa destructor and its affiliation with Deformed Wing Virus (DWV). In the current study we use next-generation sequencing to investigate the DWV quasispecies in an apiary known to suffer from overwintering colony losses. We show that the DWV species complex is made up of three master variants. Our results indicate that a new DWV Type C variant is distinct from the previously described types A and B, but together they form a distinct clade compared with other members of the Iflaviridae. The molecular clock estimation predicts that Type C diverged from the other variants ~319 years ago. The discovery of a new master variant of DWV has important implications for the positive identification of the true pathogen within global honey bee populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of emerging RNA viruses is hampered by the high mutation and replication rates that enable these viruses to operate as a quasispecies. Declining honey bee populations have been attributed to the ectoparasitic mite Varroa destructor and its affiliation with Deformed Wing Virus (DWV). In the current study we use next-generation sequencing to investigate the DWV quasispecies in an apiary known to suffer from overwintering colony losses. We show that the DWV species complex is made up of three master variants. Our results indicate that a new DWV Type C variant is distinct from the previously described types A and B, but together they form a distinct clade compared with other members of the Iflaviridae. The molecular clock estimation predicts that Type C diverged from the other variants ~319 years ago. The discovery of a new master variant of DWV has important implications for the positive identification of the true pathogen within global honey bee populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many bacterial and viral pathogens (or their toxins), including Pseudomonas aeruginosa exotoxin A, require processing by host pro-protein convertases such as furin to cause dis- ease. We report the development of a novel irreversible inhibitor of furin (QUB-F1) consist- ing of a diphenyl phosphonate electrophilic warhead coupled with a substrate-like peptide (RVKR), that also includes a biotin tag, to facilitate activity-based profiling/visualisation. QUB-F1 displays greater selectivity for furin, in comparison to a widely used exemplar com- pound (furin I) which has a chloromethylketone warhead coupled to RVKR, when tested against the serine trypsin-like proteases (trypsin, prostasin and matriptase), factor Xa and the cysteine protease cathepsin B. We demonstrate QUB-F1 does not prevent P. aerugi- nosa exotoxin A-induced airway epithelial cell toxicity; in contrast to furin I, despite inhibiting cell surface furin-like activity to a similar degree. This finding indicates additional proteases, which are sensitive to the more broad-spectrum furin I compound, may be involved in this process.