964 resultados para Paraná Continental Flood Basalts
Resumo:
Interest in attributing the risk of damaging weather-related events to anthropogenic climate change is increasing1. Yet climate models used to study the attribution problem typically do not resolve the weather systems associated with damaging events2 such as the UK floods of October and November 2000. Occurring during the wettest autumn in England and Wales since records began in 17663, 4, these floods damaged nearly 10,000 properties across that region, disrupted services severely, and caused insured losses estimated at £1.3 billion (refs 5, 6). Although the flooding was deemed a ‘wake-up call’ to the impacts of climate change at the time7, such claims are typically supported only by general thermodynamic arguments that suggest increased extreme precipitation under global warming, but fail8, 9 to account fully for the complex hydrometeorology4, 10 associated with flooding. Here we present a multi-step, physically based ‘probabilistic event attribution’ framework showing that it is very likely that global anthropogenic greenhouse gas emissions substantially increased the risk of flood occurrence in England and Wales in autumn 2000. Using publicly volunteered distributed computing11, 12, we generate several thousand seasonal-forecast-resolution climate model simulations of autumn 2000 weather, both under realistic conditions, and under conditions as they might have been had these greenhouse gas emissions and the resulting large-scale warming never occurred. Results are fed into a precipitation-runoff model that is used to simulate severe daily river runoff events in England and Wales (proxy indicators of flood events). The precise magnitude of the anthropogenic contribution remains uncertain, but in nine out of ten cases our model results indicate that twentieth-century anthropogenic greenhouse gas emissions increased the risk of floods occurring in England and Wales in autumn 2000 by more than 20%, and in two out of three cases by more than 90%.
Resumo:
Subfossil pollen and plant macrofossil data derived from 14C-dated sediment profiles can provide quantitative information on glacial and interglacial climates. The data allow climate variables related to growing season warmth, winter cold, and plant-available moisture to be reconstructed. Continental-scale reconstructions have been made for the mid-Holocene (MH, around 6 ka) and Last Glacial Maximum (LGM, around 21 ka), allowing comparison with palaeoclimate simulations currently being carried out as part of the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. The synthesis of the available MH and LGM climate reconstructions and their uncertainties, obtained using modern analogue, regression and model-inversion techniques, is presented for four temperature variables and two moisture variables. Reconstructions of the same variables based on surface-pollen assemblages are shown to be accurate and unbiased. Reconstructed LGM and MH climate anomaly patterns are coherent, consistent between variables, and robust with respect to the choice of technique. They support a conceptual model of the controls of Late Quaternary climate change whereby the first-order effects of orbital variations and greenhouse forcing on the seasonal cycle of temperature are predictably modified by responses of the atmospheric circulation and surface energy balance.
Resumo:
Early and effective flood warning is essential to initiate timely measures to reduce loss of life and economic damage. The availability of several global ensemble weather prediction systems through the “THORPEX Interactive Grand Global Ensemble” (TIGGE) archive provides an opportunity to explore new dimensions in early flood forecasting and warning. TIGGE data has been used as meteorological input to the European Flood Alert System (EFAS) for a case study of a flood event in Romania in October 2007. Results illustrate that awareness for this case of flooding could have been raised as early as 8 days before the event and how the subsequent forecasts provide increasing insight into the range of possible flood conditions. This first assessment of one flood event illustrates the potential value of the TIGGE archive and the grand-ensembles approach to raise preparedness and thus to reduce the socio-economic impact of floods.
Resumo:
Very high-resolution Synthetic Aperture Radar sensors represent an alternative to aerial photography for delineating floods in built-up environments where flood risk is highest. However, even with currently available SAR image resolutions of 3 m and higher, signal returns from man-made structures hamper the accurate mapping of flooded areas. Enhanced image processing algorithms and a better exploitation of image archives are required to facilitate the use of microwave remote sensing data for monitoring flood dynamics in urban areas. In this study a hybrid methodology combining radiometric thresholding, region growing and change detection is introduced as an approach enabling the automated, objective and reliable flood extent extraction from very high-resolution urban SAR images. The method is based on the calibration of a statistical distribution of “open water” backscatter values inferred from SAR images of floods. SAR images acquired during dry conditions enable the identification of areas i) that are not “visible” to the sensor (i.e. regions affected by ‘layover’ and ‘shadow’) and ii) that systematically behave as specular reflectors (e.g. smooth tarmac, permanent water bodies). Change detection with respect to a pre- or post flood reference image thereby reduces over-detection of inundated areas. A case study of the July 2007 Severn River flood (UK) observed by the very high-resolution SAR sensor on board TerraSAR-X as well as airborne photography highlights advantages and limitations of the proposed method. We conclude that even though the fully automated SAR-based flood mapping technique overcomes some limitations of previous methods, further technological and methodological improvements are necessary for SAR-based flood detection in urban areas to match the flood mapping capability of high quality aerial photography.
Resumo:
Global flood hazard maps can be used in the assessment of flood risk in a number of different applications, including (re)insurance and large scale flood preparedness. Such global hazard maps can be generated using large scale physically based models of rainfall-runoff and river routing, when used in conjunction with a number of post-processing methods. In this study, the European Centre for Medium Range Weather Forecasts (ECMWF) land surface model is coupled to ERA-Interim reanalysis meteorological forcing data, and resultant runoff is passed to a river routing algorithm which simulates floodplains and flood flow across the global land area. The global hazard map is based on a 30 yr (1979–2010) simulation period. A Gumbel distribution is fitted to the annual maxima flows to derive a number of flood return periods. The return periods are calculated initially for a 25×25 km grid, which is then reprojected onto a 1×1 km grid to derive maps of higher resolution and estimate flooded fractional area for the individual 25×25 km cells. Several global and regional maps of flood return periods ranging from 2 to 500 yr are presented. The results compare reasonably to a benchmark data set of global flood hazard. The developed methodology can be applied to other datasets on a global or regional scale.
Resumo:
On the 8 January 2005 the city of Carlisle in north-west England was severely flooded following 2 days of almost continuous rain over the nearby hills. Orographic enhancement of the rain through the seeder–feeder mechanism led to the very high rainfall totals. This paper shows the impact of running the Met Office Unified Model (UM) with a grid spacing of 4 and 1 km compared to the 12 km available at the time of the event. These forecasts, and forecasts from the Nimrod nowcasting system, were fed into the Probability Distributed Model (PDM) to predict river flow at the outlets of two catchments important for flood warning. The results show the benefit of increased resolution in the UM, the benefit of coupling the high-resolution rainfall forecasts to the PDM and the improvement in timeliness of flood warning that might have been possible. Copyright © 2008 Royal Meteorological Society
Resumo:
Although ensemble prediction systems (EPS) are increasingly promoted as the scientific state-of-the-art for operational flood forecasting, the communication, perception, and use of the resulting alerts have received much less attention. Using a variety of qualitative research methods, including direct user feedback at training workshops, participant observation during site visits to 25 forecasting centres across Europe, and in-depth interviews with 69 forecasters, civil protection officials, and policy makers involved in operational flood risk management in 17 European countries, this article discusses the perception, communication, and use of European Flood Alert System (EFAS) alerts in operational flood management. In particular, this article describes how the design of EFAS alerts has evolved in response to user feedback and desires for a hydrographic-like way of visualizing EFAS outputs. It also documents a variety of forecaster perceptions about the value and skill of EFAS forecasts and the best way of using them to inform operational decision making. EFAS flood alerts were generally welcomed by flood forecasters as a sort of ‘pre-alert’ to spur greater internal vigilance. In most cases, however, they did not lead, by themselves, to further preparatory action or to earlier warnings to the public or emergency services. Their hesitancy to act in response to medium-term, probabilistic alerts highlights some wider institutional obstacles to the hopes in the research community that EPS will be readily embraced by operational forecasters and lead to immediate improvements in flood incident management. The EFAS experience offers lessons for other hydrological services seeking to implement EPS operationally for flood forecasting and warning. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Satellite-based Synthetic Aperture Radar (SAR) has proved useful for obtaining information on flood extent, which, when intersected with a Digital Elevation Model (DEM) of the floodplain, provides water level observations that can be assimilated into a hydrodynamic model to decrease forecast uncertainty. With an increasing number of operational satellites with SAR capability, information on the relationship between satellite first visit and revisit times and forecast performance is required to optimise the operational scheduling of satellite imagery. By using an Ensemble Transform Kalman Filter (ETKF) and a synthetic analysis with the 2D hydrodynamic model LISFLOOD-FP based on a real flooding case affecting an urban area (summer 2007,Tewkesbury, Southwest UK), we evaluate the sensitivity of the forecast performance to visit parameters. We emulate a generic hydrologic-hydrodynamic modelling cascade by imposing a bias and spatiotemporal correlations to the inflow error ensemble into the hydrodynamic domain. First, in agreement with previous research, estimation and correction for this bias leads to a clear improvement in keeping the forecast on track. Second, imagery obtained early in the flood is shown to have a large influence on forecast statistics. Revisit interval is most influential for early observations. The results are promising for the future of remote sensing-based water level observations for real-time flood forecasting in complex scenarios.
Resumo:
Increased risks of extinction to populations of animals and plants under changing climate have now been demonstrated for many taxa. This study assesses the extinction risks to species within an important genus of pollinating bees (Colletes: Apidae) by estimating the expected changes in the area and isolation of suitable habitat under predicted climatic condition for 2050. Suitable habitat was defined on the basis of the presence of known forage plants as well as climatic suitability. To investigate whether ecological specialisation was linked to extinction risk we compared three species which were generalist pollen foragers on several plant families with three species which specialised on pollen from a single plant species. Both specialist and generalist species showed an increased risk of extinction with shifting climate, and this was particularly high for the most specialised species (Colletes anchusae and C. wolfi). The forage generalist C. impunctatus, which is associated with Boreo-Alpine environments, is potentially threatened through significant reduction in available climatic niche space. Including the distribution of the principal or sole pollen forage plant, when modelling the distribution of monolectic or narrowly oligolectic species, did not improve the predictive accuracy of our models as the plant species were considerably more widespread than the specialised bees associated with them.
Resumo:
The Normal Quantile Transform (NQT) has been used in many hydrological and meteorological applications in order to make the Cumulated Distribution Function (CDF) of the observed, simulated and forecast river discharge, water level or precipitation data Gaussian. It is also the heart of the meta-Gaussian model for assessing the total predictive uncertainty of the Hydrological Uncertainty Processor (HUP) developed by Krzysztofowicz. In the field of geo-statistics this transformation is better known as the Normal-Score Transform. In this paper some possible problems caused by small sample sizes when applying the NQT in flood forecasting systems will be discussed and a novel way to solve the problem will be outlined by combining extreme value analysis and non-parametric regression methods. The method will be illustrated by examples of hydrological stream-flow forecasts.
Resumo:
Record-breaking rainfall amounts and intensities were observed at several raingauges in central Europe during the first half of August 2002 (Fig. 1). They produced flash floods in small rivers in the Erz Mountains, the Bohemian Forest and in Lower Austria (see Fig. 2), followed by record-breaking floods of larger rivers fed from these areas. The Vltava submerged parts of the city of Prague on 13± 15 August, and subsequently the Elbe flooded parts of Dresden and further villages and towns located downstream. The gauge level of 9.40m measured at Dresden on 17 August 2002 is the highest level since 1275, exceeding the former maximum level of 8.77m recorded in 1845 (Grollmann and Simon 2002). Parts of the Danube catchment were also affected by severe flooding. There were 100 fatalities connected with the floods in central Europe, and the economic loss is estimated at 9 billion Euros for Germany (German government’s estimate), 3 billion Euros for Austria, and 2.5 billion Euros for the Czech Republic (estimates from Boyle 2002). The event thus replaced the European winter storm Lothar of December 1999 (Ulbrich et al. 2001) as the most expensive weather-related catastrophe in Europe in recent decades (see Cornford 2002). In this study, we give an overview of the exceptional rainfall experienced over wide areas on 12/13 August 2002, and the resulting floods. Further events during early August 2002, in particular the event on 6/7 August in Lower Austria, are briefly mentioned.
Resumo:
We present a well-dated, high-resolution, ~ 45 kyr lake sediment record reflecting regional temperature and precipitation change in the continental interior of the Southern Hemisphere (SH) tropics of South America. The study site is Laguna La Gaiba (LLG), a large lake (95 km2) hydrologically-linked to the Pantanal, an immense, seasonally-flooded basin and the world's largest tropical wetland (135,000 km2). Lake-level changes at LLG are therefore reflective of regional precipitation. We infer past fluctuations in precipitation at this site through changes in: i) pollen-inferred extent of flood-tolerant forest; ii) relative abundance of terra firme humid tropical forest versus seasonally-dry tropical forest pollen types; and iii) proportions of deep- versus shallow-water diatoms. A probabilistic model, based on plant family and genus climatic optima, was used to generate quantitative estimates of past temperature from the fossil pollen data. Our temperature reconstruction demonstrates rising temperature (by 4 °C) at 19.5 kyr BP, synchronous with the onset of deglacial warming in the central Andes, strengthening the evidence that climatic warming in the SH tropics preceded deglacial warming in the Northern Hemisphere (NH) by at least 5 kyr. We provide unequivocal evidence that the climate at LLG was markedly drier during the last glacial period (45.0–12.2 kyr BP) than during the Holocene, contrasting with SH tropical Andean and Atlantic records that demonstrate a strengthening of the South American summer monsoon during the global Last Glacial Maximum (~ 21 kyr BP), in tune with the ~ 20 kyr precession orbital cycle. Holocene climate conditions occurred as early as 12.8–12.2 kyr BP, when increased precipitation in the Pantanal catchment caused heightened flooding and rising lake levels in LLG. In contrast to this strong geographic variation in LGM precipitation across the continent, expansion of tropical dry forest between 10 and 3 kyr BP at LLG strengthens the body of evidence for widespread early–mid Holocene drought across tropical South America.
Resumo:
The aim of this article is to improve the communication of the probabilistic flood forecasts generated by hydrological ensemble prediction systems (HEPS) by understanding perceptions of different methods of visualizing probabilistic forecast information. This study focuses on interexpert communication and accounts for differences in visualization requirements based on the information content necessary for individual users. The perceptions of the expert group addressed in this study are important because they are the designers and primary users of existing HEPS. Nevertheless, they have sometimes resisted the release of uncertainty information to the general public because of doubts about whether it can be successfully communicated in ways that would be readily understood to nonexperts. In this article, we explore the strengths and weaknesses of existing HEPS visualization methods and thereby formulate some wider recommendations about the best practice for HEPS visualization and communication. We suggest that specific training on probabilistic forecasting would foster use of probabilistic forecasts with a wider range of applications. The result of a case study exercise showed that there is no overarching agreement between experts on how to display probabilistic forecasts and what they consider the essential information that should accompany plots and diagrams. In this article, we propose a list of minimum properties that, if consistently displayed with probabilistic forecasts, would make the products more easily understandable. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
In this contribution, we continue our exploration of the factors defining the Mesozoic climatic history. We improve the Earth system model GEOCLIM designed for long term climate and geochemical reconstructions by adding the explicit calculation of the biome dynamics using the LPJ model. The coupled GEOCLIM-LPJ model thus allows the simultaneous calculation of the climate with a 2-D spatial resolution, the coeval atmospheric CO2, and the continental biome distribution. We found that accounting for the climatic role of the continental vegetation dynamics (albedo change, water cycle and surface roughness modulations) strongly affects the reconstructed geological climate. Indeed the calculated partial pressure of atmospheric CO2 over the Mesozoic is twice the value calculated when assuming a uniform constant vegetation. This increase in CO2 is triggered by a global cooling of the continents, itself triggered by a general increase in continental albedo owing to the development of desertic surfaces. This cooling reduces the CO2 consumption through silicate weathering, and hence results in a compensating increase in the atmospheric CO2 pressure. This study demonstrates that the impact of land plants on climate and hence on atmospheric CO2 is as important as their geochemical effect through the enhancement of chemical weathering of the continental surface. Our GEOCLIM-LPJ simulations also define a climatic baseline for the Mesozoic, around which exceptionally cool and warm events can be identified.
Resumo:
The summer monsoon season is an important hydrometeorological feature of the Indian subcontinent and it has significant socioeconomic impacts. This study is aimed at understanding the processes associated with the occurrence of catastrophic flood events. The study has two novel features that add to the existing body of knowledge about the South Asian Monsoon: 1) combine traditional hydrometeorological observations (rain gauge measurements) with unconventional data (media and state historical records of reported flooding) to produce value-added century-long time-series of potential flood events, and 2) identify the larger regional synoptic conditions leading to days with flood potential in the time-series. The promise of mining unconventional data to extend hydrometeorological records is demonstrated in this study. The synoptic evolution of flooding events in the western-central coast of India and the densely populated Mumbai area are shown to correspond to active monsoon periods with embedded low-pressure centers and have far upstream influence from the western edge of the Indian Ocean basin. The coastal processes along the Arabian Peninsula where the currents interact with the continental shelf are found to be key features of extremes during the South Asian Monsoon