947 resultados para Parametric VaR (Value-at-Risk)
Resumo:
Every day trillions of dollars circulate the globe in a digital data space and new forms of property and ownership emerge. Massive corporate entities with a global reach are formed and disappear with breathtaking speed, making and breaking personal fortunes the size of which defy imagination. Fictitious commodities abound. The genomes of entire nations have become corporately owned. Relationships have become the overt basis of economic wealth and political power. Hypercapitalism explores the problems of understanding this emergent form of global political economic organization by focusing on the internal relations between language, new media networks, and social perceptions of value. Taking an historical approach informed by Marx, Phil Graham draws upon writings in political economy, media studies, sociolinguistics, anthropology, and critical social science to understand the development, roots, and trajectory of the global system in which every possible aspect of human existence, including imagined futures, has become a commodity form.
Resumo:
A sensitive near-resonant four-wave mixing technique based on two-photon parametric four-wave mixing has been developed. Seeded parametric four-wave mixing requires only a single laser as an additional phase matched seeder field is generated via parametric four-wave mixing of the pump beam in a high gain cell. The seeder field travels collinearly with the pump beam providing efficient nondegenerate four-wave mixing in a second medium. This simple arrangement facilitates the detection of complex molecular spectra by simply scanning the pump laser. Seeded parametric four-wave mixing is demonstrated in both a low pressure cell and an air/acetylene flame with detection of the two-photon C (2) Pi(upsilon'=0)<--X (2) Pi(upsilon =0) spectrum of nitric oxide. From the cell data a detection limit of 10(12) molecules/cm(3) is established. A theoretical model of seeded parametric four-wave mixing is developed from existing parametric four-wave mixing theory. The addition of the seeder field significantly modifies the parametric four-wave mixing behaviour such that in the small signal regime, the signal intensity can readily be made to scale as the cube of the laser pump power while the density dependence follows a more familiar square law dependence, In general, we find excellent agreement between theory and experiment. Limitations to the process result from an ac Stark shift of the two-photon resonance in the high pressure seeder cell caused by the generation of a strong seeder field, as well as a reduction in phase matching efficiency due to the presence of certain buffer species. Various optimizations are suggested which should overcome these limitations, providing even greater detection sensitivity. (C) 1998 American Institute of Physics, [S0021-9606(98)01014-9].
Resumo:
Two-photon resonant parametric four-wave mixing and a newly developed variant called seeded parametric four-wave mixing are used to detect trace quantities of sodium in a flame. Both techniques are simple, requiring only a single laser to generate a signal beam at a different wavelength which propagates collinearly with the pump beam, allowing efficient signal recovery. A comparison of the two techniques reveals that seeded parametric four-wave mixing is more than two orders of magnitude more sensitive than parametric four-wave mixing, with an estimated detection sensitivity of 5 x 10(9) atoms/cm(3). Seeded parametric four-wave mixing is achieved by cascading two parametric four-wave mixing media such that one of the parametric fields generated in the first high-density medium is then used to seed the same four-wave mixing process in a second medium in order to increase the four-wave mixing gain. The behavior of this seeded parametric four-wave mixing is described using semiclassical perturbation theory. A simplified small-signal theory is found to model most of the data satisfactorily. However, an anomalous saturationlike behavior is observed in the large signal regime. The full perturbation treatment, which includes the competition between two different four-wave mixing processes coupled via the signal field, accounts for this apparently anomalous behavior.
Resumo:
Watson is a fully developed suburb of some 30 years in Canberra (the capital city of Australia), A plunge dip using arsenical pesticides for tick control was operated there between 1946 and 1960, Chemical investigations revealed that many soil samples obtained from the study area contained levels of arsenic exceeding the current health-based investigation levels of 100 mg kg(-1) set by the National Health and Medical Research Council in Australia, For the speciation study, nine composite samples of surface and sub-surface soils and a composite sample of rocks were selected. ICP-MS analysis showed that arsenic levels in these samples ranged from 32 to 1597 mg kg(-1), Chemical speciation of arsenic showed that the arsenite (trivalent) components were 0.32-56% in the soil and 44.8% in the rock composite samples. Using a rat model, the absolute bioavailability of these contaminated soils relative to As3+ or As5+ ranged from 1.02 to 9.87% and 0.26 to 2.98%, respectively, An attempt was made to develop a suitable leachate test as an index of bioavailability. However, the results indicated that there was no significant correlation between the bioavailability and leachates using neutral pH water or 1 M HCl. Our results indicate that speciation is highly significant for the interpretation of bioavailability and risk assessment data; the bioavailable fractions of arsenic in soils from Watson are small and therefore the health impact upon the environment and humans due to this element is limited.