913 resultados para Panels of artistic designs
Resumo:
The Australian Coal Industry Research Laboratory (ACIRL) furnace is scaled to simulate slagging and fouling in operating boilers. This requires that the gas and target temperatures, the heat flux, and the flow pattern be the same as those in real boilers. The gas and target temperatures are maintained by insulating the wall and cooling the target respectively. The flow pattern of a small burner cannot be the same as a large furnace. However, this flow pattern is partially compensated for by placing the slagging panels in three vertical locations. The paper develops the models of radiant heat transfer from the flame to the deposits both in pilot-scale and full-scale furnaces. They are used to compare the effective radiant heat transfer of the pilot- and full-scale furnaces. The experimental data both from the pilot- and full-scale furnaces are used to verify the incident heat flux and temperature profiles in the pilot- and full-scale furnaces. The results showed that the thermal condition in the pilot-scale furnace meets the requirements for studying the slagging regarding the gas temperature and the incident heat flux, particularly for the panel #1. The gas temperature in the convective section also meets the requirement for studying the fouling.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
Recent years have seen the introduction of new and varied designs of activated sludge plants. With increasing needs for higher efficiencies and lower costs, the possibility of a plant that operates more effectively has created the need for tools that can be used to evaluate and compare designs at the design stage. One such tool is the operating space diagram. It is the aim of this paper to present this tool and demonstrate its application and relevance to design using a simple case study. In the case study, use of the operating space diagram suggested changes in design that would improve the flexibility of the process. It also was useful for designing suitable control strategies.
Resumo:
The choice of genotyping families vs unrelated individuals is a critical factor in any large-scale linkage disequilibrium (LD) study. The use of unrelated individuals for such studies is promising, but in contrast to family designs, unrelated samples do not facilitate detection of genotyping errors, which have been shown to be of great importance for LD and linkage studies and may be even more important in genotyping collaborations across laboratories. Here we employ some of the most commonly-used analysis methods to examine the relative accuracy of haplotype estimation using families vs unrelateds in the presence of genotyping error. The results suggest that even slight amounts of genotyping error can significantly decrease haplotype frequency and reconstruction accuracy, that the ability to detect such errors in large families is essential when the number/complexity of haplotypes is high (low LD/common alleles). In contrast, in situations of low haplotype complexity (high LD and/or many rare alleles) unrelated individuals offer such a high degree of accuracy that there is little reason for less efficient family designs. Moreover, parent-child trios, which comprise the most popular family design and the most efficient in terms of the number of founder chromosomes per genotype but which contain little information for error detection, offer little or no gain over unrelated samples in nearly all cases, and thus do not seem a useful sampling compromise between unrelated individuals and large families. The implications of these results are discussed in the context of large-scale LD mapping projects such as the proposed genome-wide haplotype map.
Resumo:
We study partitions of the set of all ((v)(3)) triples chosen from a v-set into pairwise disjoint planes with three points per line. Our partitions may contain copies of PG(2, 2) only (Fano partitions) or copies of AG(2, 3) only (affine partitions) or copies of some planes of each type (mixed partitions). We find necessary conditions for Fano or affine partitions to exist. Such partitions are already known in several cases: Fano partitions for v = 8 and affine partitions for v = 9 or 10. We construct such partitions for several sporadic orders, namely, Fano partitions for v = 14, 16, 22, 23, 28, and an affine partition for v = 18. Using these as starter partitions, we prove that Fano partitions exist for v = 7(n) + 1, 13(n) + 1, 27(n) + 1, and affine partitions for v = 8(n) + 1, 9(n) + 1, 17(n) + 1. In particular, both Fano and affine partitions exist for v = 3(6n) + 1. Using properties of 3-wise balanced designs, we extend these results to show that affine partitions also exist for v = 3(2n). Similarly, mixed partitions are shown to exist for v = 8(n), 9(n), 11(n) + 1.
Resumo:
This paper presents a numerical study of fluidized-bed coating on thin plates using an orthogonal collocation technique. Inclusion of the latent heat of fusion term in the boundary conditions of the mathematical model accounts for the fact that some polymer powders used in coating may be partially crystalline. Predictions of coating thickness on flat plates were made with actual polymers used in fluidized-bed coating. Reasonably good agreement between numerical predictions of the coating thickness and experimental coating data of Richart was obtained for steel panels preheated to 316 degreesC. A good agreement was also obtained between numerical predictions and our coating thickness data for nylon-11 and polyethylene powders. Predicted coating thickness for polyethylene powder on flat plates were obtained with values of heat transfer coefficient closer to those obtained from our experiments. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Motion study is an engineering technology that analyzes human body motions. During the past decade (1990-1999) a series of studies investigated the role of motion study in developmental disabilities. This article reviews the literature on the applications of motion study in the field. A historical and conceptual review of motion study leading to the current status of studies is presented followed by a review of the research literature. Two main eras of research focus were identified. The first era (1990-1995) of studies established the superior effectiveness and efficiency of tasks designed with motion study or motion study-related principles over traditional site-based task designs. The second era (1995-1999) of studies examined the interaction between motion study-based task designs and other variables such as choice, preference, and functionally equivalent and competing task designs and communicative alternatives. Our review found that applying motion study principles as an antecedent guide and practice to eliminating or reducing ineffective motions and simplifying effective motions resulted in positive task outcomes with most of the participants.
Resumo:
Orebody modelling, support effects and the estimation of recoverable reserves are key parts of open pit optimization studies. A case study is presented on the estimation of recoverable reserves using an implementation of indicator kriging where metal quantity is used to select cutoffs, and support corrections founded on a conditional simulation approach. Mining selectivity is explored in the subsequent optimization study to compare results from indicator kriging of grade estimates on a regular size blocks and indicator kriging estimates on small size blocks. The use of indicator kriging models adjusted for a given selectivity and the use of grade proportions in each block for the optimization study, provide a presentation of the expected ore recovery for a predefined level of selectivity. The case study shows that indicator kriging estimation with full accounting of block grade distributions generates substantially better results in the pit optimization study. In addition, the adverse effects of small blocks and over-smoothing on optimization results are illustrated.
Resumo:
In standard cylindrical gradient coils consisting of a single layer of wires, a limiting factor in achieving very large magnetic field gradients is the rapid increase in coil resistance with efficiency. This is a particular problem in small-bore scanners, such as those used for MR microscopy. By adopting a multi-layer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favourable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. Previously this approach has been applied to the design of unshielded, longitudinal, and transverse gradient coils. Here, the multi-layer approach has been extended to allow the design of actively shielded multi-layer gradient coils, and also to produce coils exhibiting enhanced cooling characteristics. An iterative approach to modelling the steady-state temperature distribution within the coil has also been developed. Results indicate that a good level of screening can be achieved in multi-layer coils, that small versions of such coils can yield higher efficiencies at fixed resistance than conventional two-layer (primary and screen) coils, and that performance improves as the number of layers of increases. Simulations show that by optimising multi-layer coils for cooling it is possible to achieve significantly higher gradient strengths at a fixed maximum operating temperature. A four-layer coil of 8 mm inner diameter has been constructed and used to test the steady-state temperature model. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
This paper describes the buckling phenomenon of a tubular truss with unsupported length through a full-scale test and presents a practical computational method for the design of the trusses allowing for the contribution of torsional stiffness against buckling, of which the effect has never been considered previously by others. The current practice for the design of a planar truss has largely been based on the linear elastic approach which cannot allow for the contribution of torsional stiffness and tension members in a structural system against buckling. The over-simplified analytical technique is unable to provide a realistic and an economical design to a structure. In this paper the stability theory is applied to the second-order analysis and design of the structural form, with detailed allowance for the instability and second-order effects in compliance with design code requirements. Finally, the paper demonstrates the application of the proposed method to the stability design of a commonly adopted truss system used in support of glass panels in which lateral bracing members are highly undesirable for economical and aesthetic reasons.
Resumo:
Esta pesquisa apresenta as imagens da escola como mediadoras do processo formativo dos jovens no ensino da Arte em diálogo com a história, memória e ambientes intraescolares. Inscreve-se no debate produzido pela linha de pesquisa em Educação e Linguagens. Analisa a formação dos jovens numa turma do terceiro ano do Ensino Médio na Escola Estadual de Ensino Médio “Hunney Everest Piovesan”, localizada no município de Cariacica no Estado do Espírito Santo. O estudo foi realizado em 2013 e tem como objetivo analisar as imagens escolares como mediadoras na formação dos estudantes do Ensino Médio no ensino da Arte em diálogo com a história, memória e ambientes intraescolares. Ao mesmo tempo, por meio de trabalho colaborativo, contribui para (re)construção da história da instituição, significando-a junto aos alunos e comunidade escolar. Por meio de intervenção artística com imagens da escola propõe reflexão crítica, analisando a formação dos jovens no terceiro ano do Ensino Médio. Para compreender os conceitos de mediação e meio social, estabelece um diálogo com as obras de Lev Semenovith Vigotski. A partir dos estudos de Maria Ciavatta e Schütz–Foerste procura entender a mediação imagética e sua dimensão educativa. Dialoga ainda com Frago, Escolano e Buffa, ampliando as reflexões sobre os ambientes intraescolares, dimensionando a imagética desses espaços e o senso de pertencimento à escola a partir da impregnação pela história e memória. A investigação pauta-se nos referenciais do método qualitativo e colaborativo de pesquisa. A produção dos dados contou com o recolhimento e análise documental de um conjunto de fontes primárias e secundárias formadas por livro de registro de funcionários da escola da década de 1970, diários de classe, recortes de jornais, convites de formaturas e registros fotográficos escolares dessa mesma década até a atualidade. Além desses documentos históricos, foram analisadas entrevistas de antigos alunos e questionários dos alunos do terceiro ano do Ensino Médio da instituição. Relata brevemente experiências de curto intercâmbio acadêmico realizado na Universidade de Ancara, na Turquia, com o objetivo de ampliar os horizontes de referência sociocultural, em especial com o contexto educacional do Ensino Médio euroasiático, identificando os espaços de formação dos jovens no contexto turco e suas relações com a educação brasileira. Esta experiência apresentada não integra a análise desta dissertação, mas projeta a discussão para novos estudos. A análise se elabora a partir da triangulação, entre outros, do referencial teórico com o processo de intervenção, produção de dados e no debate acadêmico em diferentes contextos. A partir da caminhada acadêmica permeada pela história e memória, inferimos que as imagens escolares medeiam o processo formativo dos jovens do terceiro ano do Ensino Médio no ensino da Arte. Contribuem para o cultivo da memória escolar, enquanto presença impregnada pela história da instituição, por meio da imagética dos seus ambientes intraescolares. Constatamos ainda que as imagens colaboram para o (re)conhecimento por parte desses sujeitos do seu papel ativo, autônomo e transformador da realidade escolar na qual estão inseridos.
Resumo:
Abstract This article provides a comprehensive picture of IR in South America by applying content analysis to 7,857 articles published in 35 journals from six South American countries from 2006 to 2014 in order to discover what the predominant theories, methods and research areas in this field are, how scholars tend to combine them in their research designs, and what the profiles of regional journals are, regarding their epistemological, methodological and subject preferences. The findings reveal a predominantly Positivist and largely Qualitative discipline, resembling North American and European IR.
Resumo:
The main objective of the present study is to assess the environmental advantages of substituting aluminium for a polymer composite in the manufacture of a structural product (a frame to be used as a support for solar panels). The composite was made of polypropylene and a recycled tyres’ rubber granulate. Analysis of different composite formulations was performed, to assess the variation of the environmental impact with the percentage of rubber granulate incorporation. The results demonstrate that the decision on which of the two systems (aluminium or composite) has the best life cycle performance is strongly dependent on the End-of Life (EoL) stage of the composite frame. When the EoL is deposition in a landfill, the aluminium frame performs globally better than its composite counterpart. However, when it is incineration with energy recovery or recycling, the composite frame is environmentally preferable. The raw material production stage was found to be responsible for most of the impacts in the two frame systems. In that context, it was shown that various benefits can accrue in several environmental impact categories by recycling rubber tyres and using the resulting materials. This is in a significant part also due to the recycling of the steel in the tyres. The present work illustrates how it is possible to minimize the overall environmental impact of consumer products through the adequate selection of their constitutive materials in the design stage. Additionally it demonstrates how an adequate EoL planning can be an important issue when developing a sustainable product, since it can highly influence its overall life cycle performance.
Resumo:
This work presents an analysis of the cultural and artistic field, positively compromised with social and political questions. The authors start with the categorization of the idea of culture and move to vindication art movements. These movements, which followed the first vanguards and worked from the compromise with “otherness”, are at the origin of the contemporary denomination of political art. In this context, the authors approach the origins of activist art, referring to issues of gender, multiculturalism, globalization, and poverty. The different forms of presenting content are also an object of analysis: from art tradition to the contamination of daily life, from local to global, from street contact to digital.