961 resultados para PERTURBATIONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some Voyager images showed that the F ring of Saturn is composed of at least four separate, non-intersecting, strands covering about 45 degrees in longitude. According to Murray et al. [Murray, C.D., Gordon, M., Giuliatti Winter, S.M. Unraveling the strands of Saturn's F ring. Icarus 129, 304, 1997.] this structure may be caused by undetected satellites embedded in the gaps.Due to precession, the satellites Prometheus and Pandora and the ring particles can experience periodic close encounters. Giuliatti Winter et al. [Giuliatti Winter, S.M, Murray, C.D., Gordon, M. Perturbations to Saturn's F-ring strands at their closest approach to Prometheus. Plan. Space Sciences, 48, 817, 2000.] analysed the behaviour of these four strands at closest approach with the satellite Prometheus. Their work suggests that Prometheus can induce the ring particles to scatter in the direction of the planet, thus increasing the population of small bodies in this region.In this work we analysed the effects of Prometheus on the radial structure of Saturn's F ring during the Voyager and early Cassini epochs. Our results show that at Voyager epoch Prometheus, and also Pandora, had a negligible influence in the strands. However, during the Cassini encounter Prometheus could affect the strands significantly, scattering particles of the inner strand in the direction of the planet. This process can contribute to the replenishment of material in the region between the F ring and the A ring, where two rings have recently been discovered [Porco, C. et al. Cassini imaging science. Initial results on Saturn's rings and small Satellites. Science, 307, 1226, 2005].We also analyse the behaviour of undetected satellites under the effects of these two satellites by computing the Lyapunov Characteristic Exponent. Our results show that these satellites have a chaotic behaviour which leads to a much more complex scenario. The new satellite S/2004 S6 also presents a chaotic behaviour with can alter the dynamic of the system, since this satellite crosses the orbit of the strands. (C) 2006 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper singularly perturbed reversible vector fields defined in R-n without normal hyperbolicity conditions are discussed. The main results give conditions for the existence of infinitely many periodic orbits and heteroclinic cycles converging to singular orbits with respect to the Hausdorff distance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samarium doped PbTiO3 (PT:Sm) and pure PbTiO3 (PT) powders were obtained by polymeric precursor method. These powders were characterized by X-ray diffraction (XRD) and theoretical calculations using the CRYSTAL98 program. The effect of the samarium atom is taken into account only indirectly. The experimental models were compared with the cubic (ideal) and tetragonal theoretical models. The structure deformations existent in the experimental compounds were analyzed from the tiny structural differences that lead to perturbations in the crystal orbital splittings. This paper proposes an efficient alternative methodology for defining structural distortions. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analytical models for studying the dynamical behaviour of objects near interior, mean motion resonances are reviewed in the context of the planar, circular, restricted three-body problem. The predicted widths of the resonances are compared with the results of numerical integrations using Poincare surfaces of section with a mass ratio of 10(-3) (similar to the Jupiter-Sun case). It is shown that for very low eccentricities the phase space between the 2:1 and 3:2 resonances is predominantly regular, contrary to simple theoretical predictions based on overlapping resonance. A numerical study of the 'evolution' of the stable equilibrium point of the 3:2 resonance as a function of the Jacobi constant shows how apocentric libration at the 2:1 resonance arises; there is evidence of a similar mechanism being responsible for the centre of the 4:3 resonance evolving towards 3:2 apocentric libration. This effect is due to perturbations from other resonances and demonstrates that resonances cannot be considered in isolation. on theoretical grounds the maximum libration width of first-order resonances should increase as the orbit of the perturbing secondary is approached. However, in reality the width decreases due to the chaotic effect of nearby resonances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the ever-increasing scale of structures discovered in the universe, we solve Einstein's equations numerically, under simplifying assumptions, to examine how this lack of uniformity affects the metric of Einstein-de Sitter cosmology. The results confirm the qualitative conclusion of Barrow, that a large density contrast is compatible with much smaller metric perturbations. The contribution of this peculiar gravity to the redshift might complicate studies of peculiar motions of galaxies, although it appears that the distortion is small for nearby clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we consider the dynamic consequences of the existence of infinite heteroclinic cycle in planar polynomial vector fields, which is a trajectory connecting two saddle points at infinity. It is stated that, although the saddles which form the cycle belong to infinity, for certain types of nonautonomous perturbations the perturbed system may present a complex dynamic behavior of the solutions in a finite part of the phase plane, due to the existence of tangencies and transversal intersections of their stable and unstable manifolds. This phenomenon might be called the chaos arising from infinity. The global study at infinity is made via the Poincare Compactification and the argument used to prove the statement is the Birkhoff-Smale Theorem. (c) 2004 WILEY-NCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a canonical formulation, the stability of the rotational motion of artificial satellites is analyzed considering perturbations due to the gravity gradient torque. Here Andoyer's variables are used to describe the rotational motion. One of the approaches that allow the analysis of the stability of Hamiltonian systems needs the reduction of the Hamiltonian to a normal form. Firstly equilibrium points are found. Using generalized coordinates, the Hamiltonian is expanded in the neighborhood of the linearly stable equilibrium points. In a next step a canonical linear transformation is used to diagonalize the matrix associated to the linear part of the system. The quadratic part of the Hamiltonian is normalized. Based in a Lie-Hori algorithm a semi-analytic process for normalization is applied and the Hamiltonian is normalized up to the fourth order. Once the Hamiltonian is normalized up to order four, the analysis of stability of the equilibrium point is performed using the theorem of Kovalev and Savichenko. This semi-analytical approach was applied considering some data sets of hypothetical satellites. For the considered satellites it was observed few cases of stable motion. This work contributes for space missions where the maintenance of spacecraft attitude stability is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we get some lower bounds for the number of critical periods of families of centers which are perturbations of the linear one. We give a method which lets us prove that there are planar polynomial centers of degree l with at least 2[(l - 2)/2] critical periods as well as study concrete families of potential, reversible and Lienard centers. This last case is studied in more detail and we prove that the number of critical periods obtained with our approach does not. increases with the order of the perturbation. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of a temperature dependent viscosity in surface nonlinear waves propagating in a shallow fluid heated from below are investigated. It is shown that the (2+1)-dimensional Burgers equation may appear as the equation governing the upper free surface perturbations of a Bénard system, even when the viscosity is assumed to depend on temperature. The critical Rayleigh number for the appearance of waves governed by the Kadomtsev-Petviashvili equation, however, will be smaller than R=30, which is the critical number obtained for a constant viscosity. © 1992.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We comment on the off-critical perturbations of WZNW models by a mass term as well as by another descendent operator, when we can compare the results with further algebra obtained from the Dirac quantization of the model, in such a way that a more general class of models be included. We discover, in both cases, hidden Kac-Moody algebras obeyed by some currents in the off-critical case, which in several cases are enough to completely fix the correlation functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using the long-wave approximation, a system of coupled evolutions equations for the bulk velocity and the surface perturbations of a Bénard-Marangoni system is obtained. It includes nonlinearity, dispersion and dissipation, and it is interpreted as a dissipative generalization of the usual Boussinesq system of equations. Then, by considering that the Marangoni number is near the critical value M = -12, we show that the modulation of the Boussinesq waves is described by a perturbed Nonlinear Schrödinger Equation, and we study the conditions under which a Benjamin-Feir instability could eventually set in. The results give sufficient conditions for stability, but are inconclusive about the existence or not of a Benjamin-Feir instability in the long-wave limit. © 1995.