999 resultados para PEPTIDE TOXIN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 1,3 dipolar cycloaddition between carbonyl ylids (generated from cyclobutene epoxides flanked by esters) and norbornyl alkenes – the ACE reaction – offers a facile method for the construction of polynorbornyl molecular frameworks. This reaction has, as described in this dissertation, underpinned the construction of molecular frameworks that have peptides and amino acids attached. Such highly rigid peptide-frameworks are of use in the field of peptidomimetics; the template molecule governs the final positioning of any attached groups such that a precise arrangement of amino acids can be achieved without the need to construct entire proteins. In the course of any ACE reaction the ester flanked cyclobutene epoxide is transformed to a 1,3 dipole, the esters serve to stablise this reactive intermediate and are as a consequence incorporated in the reaction product. Modification of these esters provides pseudo-equatorial points for peptide attachment. These methyl esters were replaced with tert-butyl esters to provide pseudo-axial attachment points that could be selectively addressed. The optimal strategy for peptide-framework construction involved direct condensation of carboxyl protected amino acids to bicyclo[2.2.1]hept-5-ene-2-endo-carboxylic acid as well as condensation of amino acids to cyclobutene epoxides derived from this acid. The ACE reaction of (±) bicycloheptene-2-endo-carboxylic acid derivatives with cyclobutene epoxides synthesised from such racemic acid derivatives provided a mixture of enantiomers and meso compounds. In order to control the position of the attachment points – and hence the final location of the attached peptides – the ACE reaction required chiral starting materials. Accordingly, all peptidoframeworks were derived from the chiral (2S)-(-)-bicycloheptene carboxylic acid. The ACE reaction of this (S)-norbornene with the (S)-epoxide provided a peptide framework in which the attached amino acids were positioned pseudo-axially. Deprotection of the amino acid allowed peptide chain building in the pseudo-axial direction. Using this strategy a framework with an alanine residue and a triglycine peptide was synthesised. By combining this strategy with the ter-butyl ester variant a framework with pseudo-axial alanine and pseudo-equatorial glycine residues was manufactured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common form of dementia in old age is Alzheimer’s disease (AD). The presence in the brain of senile plaque is the major pathological marker of AD. The plaques are primarily composed of aggregated amyloid-β peptide (Aβ). Aβ is a 40–42 amino acid peptide that is a proteolytic product derived from the β-amyloid precursor protein. The function of Aβ and the exact mechanism of Aβ aggregation and neurotoxicity are unclear. However, metal coordination by Aβ plays an important role in inducing aggregation and the generation of reactive oxygen species, which appears to be at least partially responsible for Aβ neurotoxicity. In this review we examine the role of copper and zinc ions in Aβ neurotoxicity, especially with regards to the generation of free radicals. We discuss the role of copper or zinc ions in oxidative damage and Aβ conformational changes and the relationship of these metals to AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyloid aggregates, found in patients that suffer from Alzheimer's disease, are composed of fibril-forming peptides in a β-sheet conformation. One of the most abundant components in amyloid aggregates is the β-amyloid peptide 1–42 (Aβ 1–42). Membrane alterations may proceed to cell death by either an oxidative stress mechanism, caused by the peptide and synergized by transition metal ions, or through formation of ion channels by peptide interfacial self-aggregation. Here we demonstrate that Langmuir films of Aβ 1–42, either in pure form or mixed with lipids, develop stable monomolecular arrays with a high surface stability. By using micropipette aspiration technique and confocal microscopy we show that Aβ 1–42 induces a strong membrane destabilization in giant unilamellar vesicles composed of palmitoyloleoyl-phosphatidylcholine, sphingomyelin, and cholesterol, lowering the critical tension of vesicle rupture. Additionally, Aβ 1–42 triggers the induction of a sequential leakage of low- and high-molecular-weight markers trapped inside the giant unilamellar vesicles, but preserving the vesicle shape. Consequently, the Aβ 1–42 sequence confers particular molecular properties to the peptide that, in turn, influence supramolecular properties associated to membranes that may result in toxicity, including: 1), an ability of the peptide to strongly associate with the membrane; 2), a reduction of lateral membrane cohesive forces; and 3), a capacity to break the transbilayer gradient and puncture sealed vesicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natriuretic peptide system is a family of related proteins that in humans function to reduce blood pressure and blood volume. However, in amphibians the function is less well understood. This thesis demonstrates that the amphibian, Bufo marinus, possesses a well-developed natriuretic peptide system that is capable of responding to changes induced by dehydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natriuretic peptide hormones exert their effects by binding to receptor proteins and activating cellular responses. Fish gills interface with the aquatic environment. Therefore, natriuretic peptide receptor activity in gills from marine and freshwater fishes was examined. The potencies of natriuretic peptides were compared and a novel cellular response was identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study identified cell receptors for trout natriuretic peptide hormone. These hormones protect the heart and maintain fluid balance. Receptor populations on cells depend on whether the animal lives in freshwater or saltwater. Receptors are widely distributed and different receptor types perform different tasks. Their original evolutionary role is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research has established the presence of a natriuretic peptide system in the cardiovascular system of the toad, Bufo marinus. The presence of atrial natriuretic peptide mRNA and the peptide itself were shown in the heart which does not contain natriuretic peptide receptors in contrast to the large arteries and veins. In arteries these receptors mediated vasodilation. Atrial natriuretic peptide released from the heart may act on large arteries to regulate blood flow, but the action does not target the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natriuretic peptide system of mammals is important in the control of blood volume but its function in non-mammalian animals is unclear. This study identified a functional natriuretic peptide system in an amphibian and showed that the hormones are involved in the control of fluid balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen chronically infecting the lungs of patients with chronic obstructive pulmonary disease (COPD), pneumonia, cystic fibrosis (CF), and bronchiectasis. Cif (PA2934), a bacterial toxin secreted in outer membrane vesicles (OMV) by P. aeruginosa, reduces CFTR-mediated chloride secretion by human airway epithelial cells, a key driving force for mucociliary clearance. The aim of this study was to investigate the mechanism whereby Cif reduces CFTR-mediated chloride secretion. Cif redirected endocytosed CFTR from recycling endosomes to lysosomes by stabilizing an inhibitory effect of G3BP1 on the deubiquitinating enzyme (DUB), USP10, thereby reducing USP10-mediated deubiquitination of CFTR and increasing the degradation of CFTR in lysosomes. This is the first example of a bacterial toxin that regulates the activity of a host DUB. These data suggest that the ability of P. aeruginosa to chronically infect the lungs of patients with COPD, pneumonia, CF, and bronchiectasis is due in part to the secretion of OMV containing Cif, which inhibits CFTR-mediated chloride secretion and thereby reduces the mucociliary clearance of pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P-glycoprotein (Pgp), a member of the adenosine triphosphate-binding cassette (ABC) transporter superfamily, is a major drug efflux pump expressed in normal tissues, and is overexpressed in many human cancers. Overexpression of Pgp results in reduced intracellular drug concentration and cytotoxicity of chemotherapeutic drugs and is thought to contribute to multidrug resistance of cancer cells. The involvement of Pgp in clinical drug resistance has led to a search for molecules that block Pgp transporter activity to improve the efficacy and pharmacokinetics of therapeutic agents. We have recently identified and characterized a secreted toxin from Pseudomonas aeruginosa, designated cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif). Cif reduces the apical membrane abundance of CFTR, also an ABC transporter, and inhibits the CFTR-mediated chloride ion secretion by human airway and kidney epithelial cells. We report presently that Cif also inhibits the apical membrane abundance of Pgp in kidney, airway, and intestinal epithelial cells but has no effect on plasma membrane abundance of multidrug resistance protein 1 or 2. Cif increased the drug sensitivity to doxorubicin in kidney cells expressing Pgp by 10-fold and increased the cellular accumulation of daunorubicin by 2-fold. Thus our studies show that Cif increases the sensitivity of Pgp-overexpressing cells to doxorubicin, consistent with the hypothesis that Cif affects Pgp functional expression. These results suggest that Cif may be useful to develop a new class of specific inhibitors of Pgp aimed at increasing the sensitivity of tumors to chemotherapeutic drugs, and at improving the bioavailability of Pgp transport substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide inhibitors of insulin-regulated aminopeptidase (IRAP) accelerate spatial learning and facilitate memory retention and retrieval by binding competitively to the catalytic site of the enzyme and inhibiting its catalytic activity. IRAP belongs to the M1 family of Zn2+-dependent aminopeptidases characterized by a catalytic domain that contains two conserved motifs, the HEXXH(X)18E Zn2+-binding motif and the GXMEN exopeptidase motif. To elucidate the role of GXMEN in binding peptide substrates and competitive inhibitors, site-directed mutagenesis was performed on the motif. Non-conserved mutations of residues G428, A429 and N432 resulted in mutant enzymes with altered catalytic activity, as well as divergent changes in kinetic properties towards the synthetic substrate leucine β-naphthalamide. The affinities of the IRAP inhibitors angiotensin IV, Nle1-angiotensin IV, and LVV-hemorphin-7 were selectively decreased. Substrate degradation studies using the in vitro substrates vasopressin and Leu-enkephalin showed that replacement of G428 by either D, E or Q selectively abolished the catalysis of Leu-enkephalin, while [A429G]IRAP and [N432A]IRAP mutants were incapable of cleaving both substrates. These mutational studies indicate that G428, A429 and N432 are important for binding of both peptide substrates and inhibitors, and confirm previous results demonstrating that peptide IRAP inhibitors competitively bind to its catalytic site.