983 resultados para P53 EXPRESSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oocytes present at birth undergo a progressive process of apoptosis in humans and other mammals as they age. Accepted opinion is that no fresh oocytes are produced other than those present at the time of birth. Studies have shown that DNA repair genes in oocytes of mice and women decline with age, and lack of these genes show higher DNA breaks and increased oocyte death rates. In contrast to the ethical problems associated with monitoring the changes in DNA double-strand breaks in oocytes from young and old humans, it is relatively easy to carry out such a study using a rodent model. In this study, the mRNA levels of DNA repair genes are compared with protein products of some of the genes in the primordial follicles isolated from immature (18-20 days) and aged (400-450 days) female rats. Results revealed a significant decline in mRNA levels of BRAC1 (P < 0.01), RAD51 (P < 0.05), ERCC2 (P < 0.05), and H2AX (P < 0.01) of DNA repair genes and phospho-protein levels of BRAC1 (P < 0.01) and H2AX (P < 0.05) in primordial follicles of aged rats. Impaired DNA repair is confirmed as a mechanism of oocyte ageing. (C) 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Callithrix jacchus (common marmoset) is a New World primate monkey, used as an animal model in biomedical research. Marmoset-specific follicle-stimulating hormone (FSH) preparation is required to improve superovulation protocols and to develop homologous FSH monitoring assays in these monkeys. In this study, we document the large-scale expression of recombinant marmoset FSH in methylotropic yeast, Pichia pastoris. The recombinant preparation was found to be immunologically active in Western blotting and radioimmunoassay. The preparation displayed receptor binding ability in radioreceptor assay. Based on the receptor binding ability, the yield of fermentation was estimated to be 7.2 mg/L. FSH-induced cAMP assay and estradiol assay revealed that the recombinant hormone is able to induce signal transduction. Both immunological and in vitro biological activity of marmoset FSH was found to be comparable to purified human pituitary FSH, which served as reference hormone for these assays. Thus, the study suggests that a Pichia expression system can be used for large-scale expression of bioactive recombinant marmoset FSH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor suppressor protein p53 is a master transcription regulator, indispensable for controlling several cellular pathways. Earlier work in our laboratory led to the identification of dual internal ribosome entry site (IRES) structure of p53 mRNA that regulates translation of full-length p53 and Delta 40p53. IRES-mediated translation of both isoforms is enhanced under different stress conditions that induce DNA damage, ionizing radiation and endoplasmic reticulum stress, oncogene-induced senescence and cancer. In this study, we addressed nutrient-mediated translational regulation of p53 mRNA using glucose depletion. In cell lines, this nutrient-depletion stress relatively induced p53 IRES activities from bicistronic reporter constructs with concomitant increase in levels of p53 isoforms. Surprisingly, we found scaffold/matrix attachment region-binding protein 1 (SMAR1), a predominantly nuclear protein is abundant in the cytoplasm under glucose deprivation. Importantly under these conditions polypyrimidine-tract-binding protein, an established p53 ITAF did not show nuclear-cytoplasmic relocalization highlighting the novelty of SMAR1-mediated control in stress. In vivo studies in mice revealed starvation-induced increase in SMAR1, p53 and Delta 40p53 levels that was reversible on dietary replenishment. SMAR1 associated with p53 IRES sequences ex vivo, with an increase in interaction on glucose starvation. RNAi-mediated-transient SMAR1 knockdown decreased p53 IRES activities in normal conditions and under glucose deprivation, this being reflected in changes in mRNAs in the p53 and Delta 40p53 target genes involved in cell-cycle arrest, metabolism and apoptosis such as p21, TIGAR and Bax. This study provides a new physiological insight into the regulation of this critical tumor suppressor in nutrient starvation, also suggesting important functions of the p53 isoforms in these conditions as evident from the downstream transcriptional target activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis has the ability to persist within the host in a dormant stage. One important condition believed to contribute to dormancy is reduced access to oxygen known as hypoxia. However, the response of M. tuberculosis to such hypoxia condition is not fully characterized. Virtually all dormant models against tuberculosis tested in animals used laboratory strain H37Rv or Erdman strain. But major outbreaks of tuberculosis (TB) occur with the strains that have widely different genotypes and phenotypes compared to H37Rv. In this study, we used a custom oligonucleotide microarray to determine the overall transcriptional response of laboratory strain (H37Rv) and most prevalent clinical strains (S7 and S10) of M. tuberculosis from South India to hypoxia. Analysis of microarray results revealed that a total of 1161 genes were differentially regulated (>= 1.5 fold change) in H37Rv, among them 659 genes upregulated and 502 genes down regulated. Microarray data of clinical isolates showed that a total of 790 genes were differentially regulated in S7 among which 453 genes were upregulated and 337 down regulated. Interestingly, numerous genes were also differentially regulated in S10 (total 2805 genes) of which 1463 genes upregulated and 1342 genes down regulated during reduced oxygen condition (Wayne's model). One hundred and thirty-four genes were found common and upregulated among all three strains (H37Rv, S7, and S10) and can be targeted for drug/vaccine development against TB. (C) 2015 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen signalling is critical for ovarian differentiation in reptiles with temperature-dependent sex determination (TSD). To elucidate the involvement of estrogen in this process, adrenal-kidney-gonadal (AKG) expression of estrogen receptor (ER alpha) was studied at female-producing temperature (FPT) in the developing embryos of the lizard, Calotes versicolor which exhibits a distinct pattern of TSD. The eggs of this lizard were incubated at 31.5 +/- 0.5 degrees C (100% FPT). The torso of embryos containing adrenal-kidney-gonadal complex (AKG) was collected during different stages of development and subjected to Western blotting and immunohistochemistry analysis. The ER alpha, antibody recognized two protein bands with apparent molecular weight similar to 55 and similar to 45 kDa in the total protein extracts of embryonic AKG complex of C. versicolor. The observed results suggest the occurrence of isoforms of ER alpha. The differential expression of two different protein isoforms may reveal their distinct role in cell proliferation during gonadal differentiation. This is the first report to reveal two isoforms of the ER alpha in a reptile during development. Immunohistochemical studies reveal a weak, but specific, cytoplasmic ER alpha immunostaining exclusively in the AKG during late thermo-sensitive period suggesting the responsiveness of AKG to estrogens before gonadal differentiation at FPT. Further, cytoplasmic as well as nuclear expression of ER alpha in the medulla and in oogonia of the cortex (faint activity) at gonadal differentiation stage suggests that the onset of gonadal estrogen activity coincides with sexual differentiation of gonad. Intensity and pattern of the immunoreactions of ER alpha in the medullary region at FPT suggest endogenous production of estrogen which may act in a paracrine fashion to induce neighboring cells into ovarian differentiation pathway. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thrombocytopenia is one of the most frequently observed secondary complications in many pathological conditions including liver diseases, where hyperbilirubinemia is very common. The present study sought to find the cause of thrombocytopenia in unconjugated hyperbilirubinemic conditions. Unconjugated bilirubin (UCB), an end-product of heme catabolism, is known to have pro-oxidative and cytotoxic effects at high serum concentration. We investigated the molecular mechanism underlying the pro-apoptotic effect of UCB on human platelets in vitro, and followed it up with studies in phenylhydrazine-induced hyperbilirubinemic rat model and hyperbilirubinemic human subjects. UCB is indeed found to significantly induce platelet apoptotic events including elevated endogenous reactive oxygen species generation, mitochondrial membrane depolarization, increased intracellular calcium levels, cardiolipin peroxidation and phosphatidylserine externalization (p < 0.001) as evident by FACS analysis. The immunoblots show the elevated levels of cytosolic cytochrome c and caspase activation in UCB-treated platelets. Further, UCB is found to induce mitochondrial ROS generation leading to p38 activation, followed by downstream activation of p53, ultimately resulting in altered expression of Bcl-2 and Bax proteins as evident from immunoblotting. All these parameters conclude that elevated unconjugated bilirubin causes thrombocytopenia by stimulating platelet apoptosis via mitochondrial ROS-induced p38 and p53 activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Administration of estradiol or compounds with estrogenic activity to newborn female rats results in irreversible masculinization as well as defeminization in the brain and the animals exhibit altered reproductive behavior as adults. The cellular and molecular mechanism involved in inducing the irreversible changes is largely unknown. In the present study, we have monitored the changes in the expression of selected synaptogenesis related genes in the sexually dimorphic brain regions such as POA, hypothalamus and pituitary following 17 beta-estradiol administration to neonatal female rats. Main methods: Female Wistar rats which were administered 17 beta-estradiol on day 2 and 3 after birth were sacrificed 120 days later and the expression levels of genes implicated in synaptogenesis were monitored by semi-quantitative reverse transcription PCR. Since estradiol induced up-regulation of COX-2 in POA is a marker for estradiol induced masculinization as well as defeminization, in the present study only animals in which the increase in expression of COX-2 gene was observed in POA were included in the study. Key findings: Down-regulation of genes such as NMDA-2B, NETRIN-1, BDNF, MT-5 MMP and TNF-alpha was observed in the pre-optic area of neonatally E2 treated female rat brain but not in hypothalamus and pituitary compared to the vehicle- treated controls as assessed by RT-PCR and Western blot analysis. Significance: Our results suggest a possibility that down-regulation of genes associated with synaptogenesis in POA, may be resulting in disruption of the cyclical regulation of hormone secretion by pituitary the consequence of which could be infertility and altered reproductive behavior. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insects of the order Hemiptera (true bugs) use a wide range of mechanisms of sex determination, including genetic sex determination, paternal genome elimination, and haplodiploidy. Genetic sex determination, the prevalent mode, is generally controlled by a pair of XY sex chromosomes or by an XX/XO system, but different configurations that include additional sex chromosomes are also present. Although this diversity of sex determining systems has been extensively studied at the cytogenetic level, only the X chromosome of the model pea aphid Acyrthosiphon pisum has been analyzed at the genomic level, and little is known about X chromosome biology in the rest of the order. In this study, we take advantage of published DNA- and RNA-seq data from three additional Hemiptera species to perform a comparative analysis of the gene content and expression of the X chromosome throughout this clade. We find that, despite showing evidence of dosage compensation, the X chromosomes of these species show female-biased expression, and a deficit of male-biased genes, in direct contrast to the pea aphid X. We further detect an excess of shared gene content between these very distant species, suggesting that despite the diversity of sex determining systems, the same chromosomal element is used as the X throughout a large portion of the order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion-a measure of dynamics, and entropy-a measure of disorder in the system are found to be intimately correlated in many systems, and the correlation is often strongly non-linear. We explore the origin of this complex dependence by studying diffusion of a point Brownian particle on a model potential energy surface characterized by ruggedness. If we assume that the ruggedness has a Gaussian distribution, then for this model, one can obtain the excess entropy exactly for any dimension. By using the expression for the mean first passage time, we present a statistical mechanical derivation of the well-known and well-tested scaling relation proposed by Rosenfeld between diffusion and excess entropy. In anticipation that Rosenfeld diffusion-entropy scaling (RDES) relation may continue to be valid in higher dimensions (where the mean first passage time approach is not available), we carry out an effective medium approximation (EMA) based analysis of the effective transition rate and hence of the effective diffusion coefficient. We show that the EMA expression can be used to derive the RDES scaling relation for any dimension higher than unity. However, RDES is shown to break down in the presence of spatial correlation among the energy landscape values. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anabaena PCC 7120 xisA gene product mediates the site-specific excision of 11,278 bp nifD element in heterocysts formed under nitrogen starvation conditions. Although XisA protein possesses both site-specific recombinase and endonuclease activities, till date neither xisA transcript nor XisA protein has been detected. Gene encoding XisA protein was isolated from plasmid pMX25 and overexpressed in Escherichia coli BL21 DE3 yielding 7.7 mg enzyme per L of growth culture in soluble fraction. His-tagged XisA was purified using Ni-NTA affinity chromatography with 95% recovery. The purified XisA showed a single band on SDS-PAGE with molecular mass of 52 kDa. Identity of XisA was confirmed by MALDI-TOF analysis and functionality of enzyme was confirmed using restriction digestion. A PCR based method was developed to monitor excision by XisA, which displayed near 100% activity in E. coli within 1 h at 37 degrees C on LB under static condition. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of a biologically active human IFN4 depends on the presence of a frameshift deletion polymorphism within the first exon of the interferon lambda 4 (IFNL4) gene. In this report, we use the lung carcinoma-derived cell line, A549, which is genetically viable to express a functional IFN4, to address transcriptional requirements of the IFNL4 gene. We show that the GC-rich DNA-binding transcription factor (TF) specificity protein 1 (Sp1) is recruited to the IFNL4 promoter and has a role in induction of gene expression upon stimulation with viral RNA mimic poly(I:C). By using RNAi and overexpression strategies, we also show key roles in IFNL4 gene expression for the virus-inducible TFs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B), IFN regulatory factor 3 (IRF3), and IRF7. Interestingly, we also observe that overexpression of IFN4 influences IFNL4 promoter activity, which may further be dependent on the retinoic acid-inducible gene-I (RIG-I)-like receptor pathway. Together, our work for the first time reports on the functional characterization of the human IFNL4 promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site. Luteolin treatment in a xenografted tumor model of head and neck squamous cell carcinoma (HNSCC), led to a dramatic reduction in tumor growth within 4 weeks corresponding to a decrease in histone acetylation. Cells treated with luteolin exhibit cell cycle arrest and decreased cell migration. Luteolin treatment led to an alteration in gene expression and miRNA profile including up-regulation of p53 induced miR-195/215, let7C; potentially translating into a tumor suppressor function. It also led to down regulation of oncomiRNAs such as miR-135a, thereby reflecting global changes in the microRNA network. Furthermore, a direct correlation between the inhibition of histone acetylation and gene expression was established using chromatin immunoprecipitation on promoters of differentially expressed genes. A network of dysregulated genes and miRNAs was mapped along with the gene ontology categories, and the effects of luteolin were observed to be potentially at multiple levels: at the level of gene expression, miRNA expression and miRNA processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methanol expression regulator 1 (Mxr1p) is a zinc finger protein that regulates the expression of genes encoding enzymes of the methanol utilization pathway in the methylotrophic yeast Pichia pastoris by binding to Mxr1p response elements (MXREs) present in their promoters. Here we demonstrate that Mxr1p is a key regulator of acetate metabolism as well. Mxr1p is cytosolic in cells cultured in minimal medium containing a yeast nitrogen base, ammonium sulfate, and acetate (YNBA) but localizes to the nucleus of cells cultured in YNBA supplemented with glutamate or casamino acids as well as nutrient-rich medium containing yeast extract, peptone, and acetate (YPA). Deletion of Mxr1 retards the growth of P. pastoris cultured in YNBA supplemented with casamino acids as well as YPA. Mxr1p is a key regulator of ACS1 encoding acetyl-CoA synthetase in cells cultured in YPA. A truncated Mxr1p comprising 400 N-terminal amino acids activates ACS1 expression and enhances growth, indicating a crucial role for the N-terminal activation domain during acetate metabolism. The serine 215 residue, which is known to regulate the expression of Mxr1p-activated genes in a carbon source-dependent manner, has no role in the Mxr1p-mediated activation of ACS1 expression. The ACS1 promoter contains an Mxr1p response unit (MxRU) comprising two MXREs separated by a 30-bp spacer. Mutations that abrogate MxRU function in vivo abolish Mxr1p binding to MxRU in vitro. Mxr1p-dependent activation of ACS1 expression is most efficient in cells cultured in YPA. The fact that MXREs are conserved in genes outside of the methanol utilization pathway suggests that Mxr1p may be a key regulator of multiple metabolic pathways in P. pastoris.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The opposing catalytic activities of topoisomerase I (TopoI/relaxase) and DNA gyrase (supercoiling enzyme) ensure homeostatic maintenance of bacterial chromosome supercoiling. Earlier studies in Es-cherichia coli suggested that the alteration in DNA supercoiling affects the DNA gyrase and TopoI expression. Although, the role of DNA elements around the promoters were proposed in regulation of gyrase, the molecular mechanism of supercoiling mediated control of TopoI expression is not yet understood. Here, we describe the regulation of TopoI expression from Mycobacterium tuberculosis and Mycobac-terium smegmatis by a mechanism termed Supercoiling Sensitive Transcription (SST). In both the organisms, topoI promoter(s) exhibited reduced activity in response to chromosome relaxation suggesting that SST is intrinsic to topoI promoter(s). We elucidate the role of promoter architecture and high transcriptional activity of upstream genes in topoI regulation. Analysis of the promoter(s) revealed the presence of suboptimal spacing between the -35 and -10 elements, rendering them supercoiling sensitive. Accordingly, upon chromosome relaxation, RNA polymerase occupancy was decreased on the topoI promoter region implicating the role of DNA topology in SST of topoI. We propose that negative supercoiling induced DNA twisting/writhing align the -35 and -10 elements to facilitate the optimal transcription of topoI.