930 resultados para Other biomedical engineering and bioengineering
Resumo:
This dissertation studies the process of operations systems design within the context of the manufacturing organization. Using the DRAMA (Design Routine for Adopting Modular Assembly) model as developed by a team from the IDOM Research Unit at Aston University as a starting point, the research employed empirically based fieldwork and a survey to investigate the process of production systems design and implementation within four UK manufacturing industries: electronics assembly, electrical engineering, mechanical engineering and carpet manufacturing. The intention was to validate the basic DRAMA model as a framework for research enquiry within the electronics industry, where the initial IDOM work was conducted, and then to test its generic applicability, further developing the model where appropriate, within the other industries selected. The thesis contains a review of production systems design theory and practice prior to presenting thirteen industrial case studies of production systems design from the four industry sectors. The results and analysis of the postal survey into production systems design are then presented. The strategic decisions of manufacturing and their relationship to production systems design, and the detailed process of production systems design and operation are then discussed. These analyses are used to develop the generic model of production systems design entitled DRAMA II (Decision Rules for Analysing Manufacturing Activities). The model contains three main constituent parts: the basic DRAMA model, the extended DRAMA II model showing the imperatives and relationships within the design process, and a benchmark generic approach for the design and analysis of each component in the design process. DRAMA II is primarily intended for use by researchers as an analytical framework of enquiry, but is also seen as having application for manufacturing practitioners.
Resumo:
The principle theme of this thesis is the advancement and expansion of ophthalmic research via the collaboration between professional Engineers and professional Optometrists. The aim has been to develop new and novel approaches and solutions to contemporary problems in the field. The work is sub divided into three areas of investigation; 1) High technology systems, 2) Modification of current systems to increase functionality, and 3) Development of smaller more portable and cost effective systems. High Technology Systems: A novel high speed Optical Coherence Tomography (OCT) system with integrated simultaneous high speed photography was developed achieving better operational speed than is currently available commercially. The mechanical design of the system featured a novel 8 axis alignment system. A full set of capture, analysis, and post processing software was developed providing custom analysis systems for ophthalmic OCT imaging, expanding the current capabilities of the technology. A large clinical trial was undertaken to test the dynamics of contact lens edge interaction with the cornea in-vivo. The interaction between lens edge design, lens base curvature, post insertion times and edge positions was investigated. A novel method for correction of optical distortion when assessing lens indentation was also demonstrated. Modification of Current Systems: A commercial autorefractor, the WAM-5500, was modified with the addition of extra hardware and a custom software and firmware solution to produce a system that was capable of measuring dynamic accommodative response to various stimuli in real time. A novel software package to control the data capture process was developed allowing real time monitoring of data by the practitioner, adding considerable functionality of the instrument further to the standard system. The device was used to assess the accommodative response differences between subjects who had worn UV blocking contact lens for 5 years, verses a control group that had not worn UV blocking lenses. While the standard static measurement of accommodation showed no differences between the two groups, it was determined that the UV blocking group did show better accommodative rise and fall times (faster), thus demonstrating the benefits of the modification of this commercially available instrumentation. Portable and Cost effective Systems: A new instrument was developed to expand the capability of the now defunct Keeler Tearscope. A device was developed that provided a similar capability in allowing observation of the reflected mires from the tear film surface, but with the added advantage of being able to record the observations. The device was tested comparatively with the tearscope and other tear film break-up techniques, demonstrating its potential. In Conclusion: This work has successfully demonstrated the advantages of interdisciplinary research between engineering and ophthalmic research has provided new and novel instrumented solutions as well as having added to the sum of scientific understanding in the ophthalmic field.
Resumo:
Third-party logistics service providers (3PLs) play a vital role in contemporary supply chain management. Evaluation and selection of the right 3PLs depends on a wide range of quantitative and qualitative criteria rather than cost-based factors. Although various multi-criteria decision making approaches have been proposed, they have not considered the impact of business objectives and requirements of company stakeholders on the evaluating criteria. To enable the "voice" of company stakeholders is considered, this paper develops an integrated approach for selecting 3PL strategically. In the approach, multiple evaluating criteria are derived from the requirements of company stakeholders using a series of house of quality (HOQ). The importance of evaluating criteria is prioritized with respect to the degree of achieving the stakeholder requirements using analytic hierarchy process (AHP). Based on the ranked criteria, alternative 3PLs are evaluated and compared with each other using AHP again to make an optimal selection.
Resumo:
The devising of a general engineering theory of multifunctional diagnostic systems for non-invasive medical spectrophotometry is an important and promising direction of modern biomedical engineering. We aim in this study to formalize in scientific engineering terms objectives for multifunctional laser non-invasive diagnostic system (MLNDS). The structure-functional model as well as a task-function of generalized MLNDS was formulated and developed. The key role of the system software for MLNDS general architecture at steps of ideological-technical designing has been proved. The basic principles of block-modules composition of MLNDS hardware are suggested as well. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
We report a characterization of the acoustic sensitivity of microstructured polymer optical fiber interferometric sensors at ultrasonic frequencies from 100kHz to 10MHz. The use of wide-band ultrasonic fiber optic sensors in biomedical ultrasonic and optoacoustic applications is an open alternative to conventional piezoelectric transducers. These kind of sensors, made of biocompatible polymers, are good candidates for the sensing element in an optoacoustic endoscope because of its high sensitivity, its shape and its non-brittle and non-electric nature. The acoustic sensitivity of the intrinsic fiber optic interferometric sensors depends strongly of the material which is composed of. In this work we compare experimentally the intrinsic ultrasonic sensitivities of a PMMA mPOF with other three optical fibers: a singlemode silica optical fiber, a single-mode polymer optical fiber and a multimode graded-index perfluorinated polymer optical fiber. © 2014 SPIE.
Resumo:
MEG beamformer algorithms work by making the assumption that correlated and spatially distinct local field potentials do not develop in the human brain. Despite this assumption, images produced by such algorithms concur with those from other non-invasive and invasive estimates of brain function. In this paper we set out to develop a method that could be applied to raw MEG data to explicitly test his assumption. We show that a promax rotation of MEG channel data can be used as an approximate estimator of the number of spatially distinct correlated sources in any frequency band.
Resumo:
Congenital nystagmus (CN) is an ocular-motor disorder characterised by involuntary, conjugated ocular oscillations and its pathogenesis is still under investigation. This kind of nystagmus is termed congenital (or infantile) since it could be present at birth or it can arise in the first months of life. Most of CN patients show a considerable decrease of their visual acuity: image fixation on the retina is disturbed by nystagmus continuous oscillations, mainly horizontal. However, the image of a given target can still be stable during short periods in which eye velocity slows down while the target image is placed onto the fovea (called foveation intervals). To quantify the extent of nystagmus, eye movement recording are routinely employed, allowing physicians to extract and analyse nystagmus main features such as waveform shape, amplitude and frequency. Using eye movement recording, it is also possible to compute estimated visual acuity predictors: analytical functions which estimates expected visual acuity using signal features such as foveation time and foveation position variability. Use of those functions extend the information from typical visual acuity measurement (e.g. Landolt C test) and could be a support for therapy planning or monitoring. This study focuses on detection of CN patients' waveform type and on foveation time measure. Specifically, it proposes a robust method to recognize cycles corresponding to the specific CN waveform in the eye movement pattern and, for those cycles, evaluate the exact signal tracts in which a subject foveates. About 40 eyemovement recordings, either infrared-oculographic or electrooculographic, were acquired from 16 CN subjects. Results suggest that the use of an adaptive threshold applied to the eye velocity signal could improve the estimation of slow phase start point. This can enhance foveation time computing and reduce influence of repositioning saccades and data noise on the waveform type identification.
Resumo:
Background: Electrosurgery units are widely employed in modern surgery. Advances in technology have enhanced the safety of these devices, nevertheless, accidental burns are still regularly reported. This study focuses on possible causes of sacral burns as complication of the use of electrosurgery. Burns are caused by local densifications of the current, but the actual pathway of current within patient's body is unknown. Numerical electromagnetic analysis can help in understanding the issue. Methods: To this aim, an accurate heterogeneous model of human body (including seventy-seven different tissues), electrosurgery electrodes, operating table and mattress was build to resemble a typical surgery condition. The patient lays supine on the mattress with the active electrode placed onto the thorax and the return electrode on his back. Common operating frequencies of electrosurgery units were considered. Finite Difference Time Domain electromagnetic analysis was carried out to compute the spatial distribution of current density within the patient's body. A differential analysis by changing the electrical properties of the operating table from a conductor to an insulator was also performed. Results: Results revealed that distributed capacitive coupling between patient body and the conductive operating table offers an alternative path to the electrosurgery current. The patient's anatomy, the positioning and the different electromagnetic properties of tissues promote a densification of the current at the head and sacral region. In particular, high values of current density were located behind the sacral bone and beneath the skin. This did not occur in the case of non-conductive operating table. Conclusion: Results of the simulation highlight the role played from capacitive couplings between the return electrode and the conductive operating table. The concentration of current density may result in an undesired rise in temperature, originating burns in body region far from the electrodes. This outcome is concordant with the type of surgery-related sacral burns reported in literature. Such burns cannot be immediately detected after surgery, but appear later and can be confused with bedsores. In addition, the dosimetric analysis suggests that reducing the capacity coupling between the return electrode and the operating table can decrease or avoid this problem. © 2013 Bifulco et al.; licensee BioMed Central Ltd.
Resumo:
Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization.
Resumo:
The UK Government and large employers have recognised the skills gap between learners leaving the education system and the requirements of employers. The current system is seen to be failing significant numbers of learners and has been accused of schooling but not educating our young people. University-led technical colleges are one part of the solution being developed to provide outstanding engineering education. This paper focusses on the learning experience that the Aston University Engineering Academy, the first University-led University Technical College (UTC), has created for entrants to the Engineering Academy in September 2012, when it opens in brand new buildings next to the University. The overall aim is to produce technically literate young people that have business and enterprise skills as well as insight into the diverse range of opportunities in Engineering and Technical disciplines. The project has brought University staff and students together with employers and Academy staff to optimise the engineering education that they will receive. The innovative model presented has drawn on research from across the world in the implementation of this new type of school, as well as educational practices from the USA and the Scandinavian countries. The resulting curriculum is authentic and exciting and expands the University model of problem-based learning and placements into the secondary school environment. The benefits of this close partnership for University staff and students, the employers and the Academy staff are expanded on and the paper concludes with a prediction of progression routes from the Academy.
Resumo:
The automotive industry combines a multitude of professionals to develop a modern car successfully. Within the design and development teams the collaboration and interface between Engineers and Designers is critical to ensure design intent is communicated and maintained throughout the development process. This study highlights recent industry practice with the emergence of Concept Engineers in design teams at Jaguar Land Rover Automotive group. The role of the Concept Engineer emphasises the importance of the Engineering and Design/Styling interface with the Concept engineer able to interact and understand the challenges and specific languages of each specialist area, hence improving efficiency and communication within the design team. Automotive education tends to approach design from two distinct directions, that of engineering design through BSc courses or a more styling design approach through BA and BDes routes. The educational challenge for both types of course is to develop engineers and stylist's who have greater understanding and experience of each other's specialist perspective of design and development. The study gives examples of two such courses in the UK who are developing programmes to help students widen their understanding of the engineering and design spectrum. Initial results suggest the practical approach has been well received by students and encouraged by industry as they seek graduates with specialist knowledge but also a wider appreciation of their role within the design process.
Resumo:
The objective of this study was to gain further understanding and elucidation of the fluid dynamic factors and flow-induced mechanisms of the thrombogenic process of platelet deposition onto, and possible subsequent embolization from, the walls of an arterial stenosis. This has been accomplished by measurement of the axial dependence of platelet deposition within a modeled arterial stenosis for a transitional flow and a completely laminar flow field. The stenotic region of the model was collagen-coated to simulate a damaged endothelial lining of an artery. Fluid dynamics within a stenosis was studied using qualitative flow visualization, and was further compared to the in vitro platelet deposition studies. Normalized platelet density (NPD) measurements indicate decreased levels of NPD in the high shear throat region of the stenosis for a Reynolds number of 300 and a drastic increase in NPD at the throat for a Reynolds number of 175. This study provides further understanding of the flow dynamic effects on thrombus development within a stenosis. ^
Resumo:
This dissertation develops a new mathematical approach that overcomes the effect of a data processing phenomenon known as “histogram binning” inherent to flow cytometry data. A real-time procedure is introduced to prove the effectiveness and fast implementation of such an approach on real-world data. The histogram binning effect is a dilemma posed by two seemingly antagonistic developments: (1) flow cytometry data in its histogram form is extended in its dynamic range to improve its analysis and interpretation, and (2) the inevitable dynamic range extension introduces an unwelcome side effect, the binning effect, which skews the statistics of the data, undermining as a consequence the accuracy of the analysis and the eventual interpretation of the data. ^ Researchers in the field contended with such a dilemma for many years, resorting either to hardware approaches that are rather costly with inherent calibration and noise effects; or have developed software techniques based on filtering the binning effect but without successfully preserving the statistical content of the original data. ^ The mathematical approach introduced in this dissertation is so appealing that a patent application has been filed. The contribution of this dissertation is an incremental scientific innovation based on a mathematical framework that will allow researchers in the field of flow cytometry to improve the interpretation of data knowing that its statistical meaning has been faithfully preserved for its optimized analysis. Furthermore, with the same mathematical foundation, proof of the origin of such an inherent artifact is provided. ^ These results are unique in that new mathematical derivations are established to define and solve the critical problem of the binning effect faced at the experimental assessment level, providing a data platform that preserves its statistical content. ^ In addition, a novel method for accumulating the log-transformed data was developed. This new method uses the properties of the transformation of statistical distributions to accumulate the output histogram in a non-integer and multi-channel fashion. Although the mathematics of this new mapping technique seem intricate, the concise nature of the derivations allow for an implementation procedure that lends itself to a real-time implementation using lookup tables, a task that is also introduced in this dissertation. ^
Resumo:
The objective of this study was to develop a model to predict transport and fate of gasoline components of environmental concern in the Miami River by mathematically simulating the movement of dissolved benzene, toluene, xylene (BTX), and methyl-tertiary-butyl ether (MTBE) occurring from minor gasoline spills in the inter-tidal zone of the river. Computer codes were based on mathematical algorithms that acknowledge the role of advective and dispersive physical phenomena along the river and prevailing phase transformations of BTX and MTBE. Phase transformations included volatilization and settling. ^ The model used a finite-difference scheme of steady-state conditions, with a set of numerical equations that was solved by two numerical methods: Gauss-Seidel and Jacobi iterations. A numerical validation process was conducted by comparing the results from both methods with analytical and numerical reference solutions. Since similar trends were achieved after the numerical validation process, it was concluded that the computer codes algorithmically were correct. The Gauss-Seidel iteration yielded at a faster convergence rate than the Jacobi iteration. Hence, the mathematical code was selected to further develop the computer program and software. The model was then analyzed for its sensitivity. It was found that the model was very sensitive to wind speed but not to sediment settling velocity. ^ A computer software was developed with the model code embedded. The software was provided with two major user-friendly visualized forms, one to interface with the database files and the other to execute and present the graphical and tabulated results. For all predicted concentrations of BTX and MTBE, the maximum concentrations were over an order of magnitude lower than current drinking water standards. It should be pointed out, however, that smaller concentrations than the latter reported standards and values, although not harmful to humans, may be very harmful to organisms of the trophic levels of the Miami River ecosystem and associated waters. This computer model can be used for the rapid assessment and management of the effects of minor gasoline spills on inter-tidal riverine water quality. ^