915 resultados para Osmotic and ionic regulation


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytoskeleton is important for neuronal morphogenesis. During the postnatal development of cat brain, the molecular composition of the neuronal cytoskeleton changes with maturation. Several of its proteins change in their rate of expression, in their degree of phosphorylation, in their subcellular distribution, or in their biochemical properties. It is proposed that phosphorylation is an essential mechanism to regulate the plasticity of the early, juvenile-type cytoskeleton. Among such proteins are several microtubule-associated proteins (MAPs), such as MAP5a, MAP2c or the juvenile tau proteins. Phosphorylation may also act on neurofilaments, postulated to be involved in the adult-type stabilization of axons. These observations imply that phosphorylation may affect cytoskeleton function in axons and dendrites at various developmental stages. Yet, the mechanisms of phosphorylation and its regulation cascades are largely unknown. In view of the topic of this issue on CD15, the potential role of matrix molecules being involved in the modulation of phosphorylation activity and of cytoskeletal properties is addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To enhance the prevention and intervention efforts of childhood obesity, there is a strong need for the early detection of psychological factors contributing to its development and maintenance. Rather than a stable condition, childhood obesity represents a dynamic process, in which behavior, cognition and emotional regulation interact mutually with each other. Family structure and context, that is, parental and familial attitudes, activity, nutritional patterns as well as familial stress, have an important role with respect to the onset and maintenance of overweight and obesity. Behavioral and emotional problems are found in many, though not all, obese children, with a higher prevalence in clinical, treatment-seeking samples. The interrelatedness between obesity and psychological problems seems to be twofold, in that clinically meaningful psychological distress might foster weight gain and obesity may lead to psychosocial problems. The most frequently implicated psychosocial factors are externalizing (impulsivity and attention-deficit hyperactivity disorder) and internalizing (depression and anxiety) behavioral problems and uncontrolled eating behavior. These findings strengthen the need to further explore the interrelatedness between psychological problems and childhood obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anàlisi de la regulació estatal i autonòmica, així com la jurisprudència del Tribunal Suprem i els tribunals superiors de justícia, per tal d’examinar la necessària ampliació de la competència de la Sala Civil i Penal del Tribunal Superior de Catalunya pel que fa al coneixement de la revisió de la sentència ferma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small nuclear RNA-activating protein complex SNAP(c) is required for transcription of small nuclear RNA genes and binds to a proximal sequence element in their promoters. SNAP(c) contains five types of subunits stably associated with each other. Here we show that one of these polypeptides, SNAP45, also known as PTF delta, localizes to centrosomes during parts of mitosis, as well as to the spindle midzone during anaphase and the mid-body during telophase. Consistent with localization to these mitotic structures, both down- and up-regulation of SNAP45 lead to a G(2)/M arrest with cells displaying abnormal mitotic structures. In contrast, down-regulation of SNAP190, another SNAP(c) subunit, leads to an accumulation of cells with a G(0)/G(1) DNA content. These results are consistent with the proposal that SNAP45 plays two roles in the cell, one as a subunit of the transcription factor SNAP(c) and another as a factor required for proper mitotic progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Glioblastoma (WHO Grade IV glioma) is the most frequent and most¦malignant primary tumor of the brain. With a mean survival of 15 months despite¦multidisciplinary management combining surgery, chemo- and radiotherapy, the prognosis¦is poor. Different studies measured a down-regulation of Wnt Inhibitory Factor 1 (WIF1)¦expression in a majority of gliobastoma due to genetic and epigenetic regulation. Recently,¦a focus on chromosome 12 identified WIF1 as a potential tumor suppressor gene. In¦previous results, transfected glioblastoma cells with ectopic expression of WIF1 had a¦decreased growth rate and adopted a senescence-like phenotype. In this report, we first¦investigated the effect of WIF1 re-expression in glioblastoma cell lines to see if Wnt¦inhibition by WIF1 can lead to senescence. To look further, we assessed p21 and c-Myc¦expression. p21 has a key role in senescence onset and is directly inhibited by c-Myc,¦itself a target of Wnt-pathway. We thus looked if a variation of expression of these genes is¦triggered by WIF1 activity. Finally, as autophagy is thought to play a role in senescence¦onset, we analyzed the expression of different autophagy genes. We therefore looked for¦an association between autophagy activity and senescent phenotype in WIF1-¦overexpressing cell lines.¦Methods: WIF1-overexpressing clones were selected after transfection of stable¦glioblastoma cell lines. Analysis were made through quantitative Polymerase Chain¦Reaction (qPCR), Fluorescence-activated Cell Sorting (FACS) and histochemistry.¦IGFBP7 and ALDH1A3 have been selected to reflect senescence. ATG5, ATG7 and ULK3¦have been selected to reflect autophagy activity.¦Results: Using FACS analysis, we found a higher percentage of large cells with increased¦granularity amongst WIF1-overexpressing cell lines, which are characteristics of¦senescence. In addition, histochemistry showed a higher percentage of multi-nucleated,¦beta-galactosidase positive cells in the same cell lines. An increased expression of genes¦associated with senescence was found as well. All characteristics were correlated with¦levels of WIF1 expression. We did not find any association between p21 and WIF1¦expression. No correlation between WIF1 and c-Myc expression was noticed either. In one¦of the two cell lines analyzed, the expression of autophagy genes showed some¦correlation with expression of WIF1 and expression of genes associated with senescence.¦Discussion: After investigations and characterizations on multiple levels, we have¦evidence for a senescence phenotype upon WIF1-overexpressing cell lines. This gives a¦role to Wnt pathway in the tumorigenicity of glioblastoma. Further experiments are¦required to investigate how Wnt inhibition leads to senescence. The role of autophagy in¦our senescent cells is here still unclear. Some correlations can be found, letting us think¦that there is indeed some involvement of autophagy. However, it is yet to soon to explain¦this relationship. Further experiments are required again to confirm the preliminary results¦and analyze the variations of autophagy activity within time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highly amiloride-sensitive epithelial sodium channel (ENaC) is an apical membrane constituent of cells of many salt-absorbing epithelia. In the kidney, the functional relevance of ENaC expression has been well established. ENaC mediates the aldosterone-dependent sodium reabsorption in the distal nephron and is involved in the regulation of blood pressure. Mutations in genes encoding ENaC subunits are causative for two human inherited diseases: Liddle's syndrome, a severe form of hypertension associated with ENaC hyperfunction, and pseudohypoaldosteronism (PHA-1), a salt-wasting syndrome caused by decreased ENaC function. Transgenic mouse technologies provide a useful tool to study the role of ENaC in vivo. Different mouse lines have been established in which each of the ENaC subunits was affected. The phenotypes observed in these mice demonstrated that each subunit is essential for survival and for regulation of sodium transport in kidney and colon. Moreover, the alpha subunit plays a specific role in the control of fluid absorption in the airways at birth. Such mice can now be used to study the role of ENaC in various organs and can serve as models to understand the pathophysiology of these human diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A role for glucose in the control of feeding has been proposed, but its precise physiological importance is unknown. Here, we evaluated feeding behavior in glut2-null mice, which express a transgenic glucose transporter in their beta-cells to rescue insulin secretion (ripglut1;glut2-/- mice). We showed that in the absence of GLUT2, daily food intake was increased and feeding initiation and termination following a fasting period were abnormal. This was accompanied by suppressed regulation of hypothalamic orexigenic and anorexigenic neuropeptides expression during the fast-to-refed transition. In these conditions, however, there was normal regulation of the circulating levels of insulin, leptin, or glucose but a loss of regulation of plasma ghrelin concentrations. To evaluate whether the abnormal feeding behavior was due to suppressed glucose sensing, we evaluated feeding in response to intraperitoneal or intracerebroventricular glucose or 2-deoxy-D-glucose injections. We showed that in GLUT2-null mice, feeding was no longer inhibited by glucose or activated by 2-deoxy-D-glucose injections and the regulation of hypothalamic neuropeptide expression by intracerebroventricular glucose administration was lost. Together, these data demonstrate that absence of GLUT2 suppressed the function of central glucose sensors, which control feeding probably by regulating the hypothalamic melanocortin pathway. Furthermore, inactivation of these glucose sensors causes overeating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 During a search for genes controlling conidial dormancy in Aspergillus fumigatus, two dehydrin-like genes, DprA and DprB, were identified. The deduced proteins had repeated stretches of 23 amino acids that contained a conserved dehydrin-like protein (DPR) motif. Disrupted DprAΔ mutants were hypersensitive to oxidative stress and to phagocytic killing, whereas DprBΔ mutants were impaired in osmotic and pH stress responses. However, no effect was observed on their pathogenicity in our experimental models of invasive aspergillosis. Molecular dissection of the signaling pathways acting upstream showed that expression of DprA was dependent on the stress-activated kinase SakA and the cyclic AMP-protein kinase A (cAMP-PKA) pathways, which activate the bZIP transcription factor AtfA, while expression of DprB was dependent on the SakA mitogen-activated protein kinase (MAPK) pathway, and the zinc finger transcription factor PacC. Fluorescent protein fusions showed that both proteins were associated with peroxisomes and the cytosol. Accordingly, DprA and DprB were important for peroxisome function. Our findings reveal a novel family of stress-protective proteins in A. fumigatus and, potentially, in filamentous ascomycetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secretory IgA (SIgA) plays an important role in the protection and homeostatic regulation of intestinal, respiratory, and urogenital mucosal epithelia separating the outside environment from the inside of the body. This primary function of SIgA is referred to as immune exclusion, a process that limits the access of numerous microorganisms and mucosal antigens to these thin and vulnerable mucosal barriers. SIgA has been shown to be involved in avoiding opportunistic pathogens to enter and disseminate in the systemic compartment, as well as tightly controlling the necessary symbiotic relationship existing between commensals and the host. Clearance by peristalsis appears thus as one of the numerous mechanisms whereby SIgA fulfills its function at mucosal surfaces. Sampling of antigen-SIgA complexes by microfold (M) cells, intimate contact occurring with Peyer's patch dendritic cells (DC), down-regulation of inflammatory processes, modulation of epithelial, and DC responsiveness are some of the recently identified processes to which the contribution of SIgA has been underscored. This review aims at presenting, with emphasis at the biochemical level, how the molecular complexity of SIgA can serve these multiple and non-redundant modes of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transposable elements, as major components of most eukaryotic organisms' genomes, define their structural organization and plasticity. They supply host genomes with functional elements, for example, binding sites of the pleiotropic master transcription factor p53 were identified in LINE1, Alu and LTR repeats in the human genome. Similarly, in this report we reveal the role of zebrafish (Danio rerio) EnSpmN6_DR non-autonomous DNA transposon in shaping the repertoire of the p53 target genes. The multiple copies of EnSpmN6_DR and their embedded p53 responsive elements drive in several instances p53-dependent transcriptional modulation of the adjacent gene, whose human orthologs were frequently previously annotated as p53 targets. These transposons define predominantly a set of target genes whose human orthologs contribute to neuronal morphogenesis, axonogenesis, synaptic transmission and the regulation of programmed cell death. Consistent with these biological functions the orthologs of the EnSpmN6_DR-colonized loci are enriched for genes expressed in the amygdala, the hippocampus and the brain cortex. Our data pinpoint a remarkable example of convergent evolution: the exaptation of lineage-specific transposons to shape p53-regulated neuronal morphogenesis-related pathways in both a hominid and a teleost fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic-inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated disease with no known biomarkers for diagnosing the disease or assessing its prognosis. We performed transcriptional profiling microarray analysis on skin punch biopsies from 20 CIDP patients and 17 healthy controls to identify disease-associated gene expression changes. We demonstrate changes in expression of genes involved in immune and chemokine regulation, growth and repair. We also found a combination of two upregulated genes that can be proposed as a novel biomarker of the disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to prevent allograft rejection, most current immunosuppressive drugs nonspecifically target T-cell activation, clonal expansion or differentiation into effector cells. Experimental models have shown that it is possible to exploit the central and peripheral mechanisms that normally maintain immune homeostasis and tolerance to self-antigens, in order to induce tolerance to alloantigens. Central tolerance results from intrathymic deletion of T cells with high avidity for thymically expressed antigens. Peripheral tolerance to nonself-molecules can be achieved by various mechanisms including deletion of activated/effector T cells, anergy induction and active regulation of effector T cells. In this article, we briefly discuss the pathways of allorecognition and their relevance to current immunosuppressive strategies and to the induction of transplantation tolerance (through haematopoietic mixed chimerism, depleting protocols, costimulatory blockade and regulatory T cells). We then review the prospect of clinical applicability of these protocols in solid organ transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El artículo describe los efectos de las aceleraciones positivas (+Gz) sobre el organismohumano. Se consideran los factores determinantes de las aceleraciones: intensidad, velocidad de comienzo, dirección y duración. La fisiopatología describe los factores hidrostáticos,hemodinámicos y de regulación refleja del aparato cardiocirculatorio. La exposición a +Gz produce reacciones adaptativas fisiológicas. Cuando éstas se superan, aparecen patologías de tipocardiocirculatorio, respiratorio, músculoesquelético, nervioso, sensorial,... Se describen los diferentes procedimientos y equipos específicos que protegen al piloto de los efectos de +Gz. Éstos incluyen las maniobras de contracción muscular, los trajes anti-G, los equipos de respiración a presión positiva, así como el entrenamiento en centrífuga.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important hallmark of cancer cells is a profound change in metabolism. Indeed, most tumor cells are characterized by higher rates of glycolysis, lactate production, and biosynthesis of lipids and other macromolecules. Our group, among others, has previously demonstrated a close relationship between metabolic responses and proliferative stimuli, showing that cell cycle regulators have a major role in the control of metabolism. Changes in this coordinated response might lead to abnormal metabolic changes during tumor development and cancer progression. In this paper we review the dual role of cell cycle regulators in the control of both proliferation and metabolism in normal and in cancer cells. We show participation of the E2F1-CDK4 axis in the modulation of oxidative metabolism, in the positive regulation of lipid synthesis, and the regulation glycolysis. These three metabolic pathways are, interestingly fundamental in providing synthetic processes, energy production and cell signaling events, which are crucial factors for cancer cell survival.