895 resultados para Optimization of Water Resources Management and Control
Resumo:
Water regulations have decreased irrigation water supplies in Nebraska and some other areas of the USA Great Plains. When available water is not enough to meet crop water requirements during the entire growing cycle, it becomes critical to know the proper irrigation timing that would maximize yields and profits. This study evaluated the effect of timing of a deficit-irrigation allocation (150 mm) on crop evapotranspiration (ETc), yield, water use efficiency (WUE = yield/ETc), irrigation water use efficiency (IWUE = yield/irrigation), and dry mass (DM) of corn (Zea mays L.) irrigated with subsurface drip irrigation in the semiarid climate of North Platte, NE. During 2005 and 2006, a total of sixteen irrigation treatments (eight each year) were evaluated, which received different percentages of the water allocation during July, August, and September. During both years, all treatments resulted in no crop stress during the vegetative period and stress during the reproductive stages, which affected ETc, DM, yield, WUE and IWUE. Among treatments, ETc varied by 7.2 and 18.8%; yield by 17 and 33%; WUE by 12 and 22%, and IWUE by 18 and 33% in 2005 and 2006, respectively. Yield and WUE both increased linearly with ETc and with ETc/ETp (ETp = seasonal ETc with no water stress), and WUE increased linearly with yield. The yield response factor (ky) averaged 1.50 over the two seasons. Irrigation timing affected the DM of the plant, grain, and cob, but not that of the stover. It also affected the percent of DM partitioned to the grain (harvest index), which increased linearly with ETc and averaged 56.2% over the two seasons, but did not affect the percent allocated to the cob or stover. Irrigation applied in July had the highest positive coefficient of determination (R2) with yield. This high positive correlation decreased considerably for irrigation applied in August, and became negative for irrigation applied in September. The best positive correlation between the soil water deficit factor (Ks) and yield occurred during weeks 12-14 from crop emergence, during the "milk" and "dough" growth stages. Yield was poorly correlated to stress during weeks 15 and 16, and the correlation became negative after week 17. Dividing the 150 mm allocation about evenly among July, August and September was a good strategy resulting in the highest yields in 2005, but not in 2006. Applying a larger proportion of the allocation in July was a good strategy during both years, and the opposite resulted when applying a large proportion of the allocation in September. The different results obtained between years indicate that flexible irrigation scheduling techniques should be adopted, rather than relying on fixed timing strategies.
Resumo:
Catches of sharks and bycatch in large-mesh nets and baited drumlines used by the Queensland Shark Control Program were examined to determine the efficacy of both gear types and assess fishing strategies that minimise their impacts. There were few significant differences in the size of both sharks and bycatch in the two gear types, apart from significantly smaller (p < 0.05) tiger sharks Galeocerdo cuvier being taken on drumlines and smaller green turtles Chelonia mydas in nets. Catch per unit effort showed orders of magnitude differences among species, even within the same family. Hammerhead sharks and rays were particularly vulnerable to net capture, whereas higher catch rates of tiger sharks were observed for drumlines. Nets caught more marine mammals, teleost fish and rays, whereas drumlines exhibited higher catch rates of the threatened loggerhead turtle Caretta caretta. Survival of most taxa (particularly obligate ram ventilators) was lower in nets than drumlines. Bycatch species (turtles and marine mammals) were able to swim to the surface to breathe when they were hooked on drumlines, enhancing their survival potential. Fishing strategies that recognise the different selectivity patterns of the gear can be developed to suit local biotic and abiotic conditions, although it is recognised that quantification of both ecological risk and risk to bathers is not a simple task.
Resumo:
This application was developed in response to the widely recognised concern that climate change will result in changes to marine life and ecosystems, and hence fisheries, throughout Australia with tropical marine ecosystems in northern Australia identified as being particularly vulnerable. These changes are predicted to vary spatially depending on local climate and biophysical processes. Northern Australia is one of three major Australian regions predicted to be impacted. The project addresses the important FRDC strategic challenge of improving the management of aquatic natural resources to ensure their sustainability through research and management that accounts for the effects that climate change may have on the resources.
Resumo:
The purpose of this report is to present the final results of all activities conducted under HAL Project VG05053 ‘Virus identification and development of long-term management strategies for the rhubarb industry’. The report provides a summary of project findings, a description of technology transfer activities, and recommendations arising from the outcomes of the project. The overall objective of this project was to devise a strategy for the control of rhubarb decline disease through 1) knowledge of the viruses present and their epidemiology, 2) production of virus-free planting material via tissue culture, and 3) formation of a national grower group to represent industry.
Resumo:
This final report ‘Development and promotion of IPM strategies for silverleaf whitefly in vegetables’ summarises the research and extension into development and implementation of IPM programs for silverleaf whitefly in vegetables. Chemical and biologicontrol for Silverleaf Whitefly in pumpkin, brassica, bean and sweet potatoes.
Resumo:
Management of Phytophthora fruit rot and Pythium-related root rot of papaya.
Resumo:
This project aims to address the growing need for a coordinated approach to research into the biological control of Australian eucalypt insect pests by scoping the formation of a Centre in Australia which would (a) coordinate the evaluation and provision of biological control agents (initially to South Africa and Brazil, but in future years more widely), (b) research the role natural enemies play in pest population regulation in Australian eucalypt plantations and how this may be enhanced as a management tool, and (c) form a network focussed on forest biosecurity with an emphasis on eucalypt pests and pathogens.
Improved understanding of the damage, ecology, and management of mirids and stinkbugs in Bollgard II
Resumo:
In recent years mirids and stinkbugs have emerged as important sucking pests in cotton. While stinkbugs are causing damage to bolls, mirids are causing damage to seedlings, squares and bolls. With the increasing adoption of Bollgard II and IPM approaches the use of broad-spectrum chemicals to kill Helicoverpa has been reduced and as a result mirids and stinkbugs are building to levels causing damage to bolls later in crop growth stages. Studies on stinkbugs by Dr Moazzem Khan revealed that green vegetable bug (GVB) caused significant boll damage and yield loss. A preliminary study by Dr Khan on mirids revealed that high mirid numbers at later growth stages also caused significant boll damage and that damage caused by mirids and GVB were similar. Mirids and stinkbugs therefore demand greater attention in order to minimise losses caused by these pests and to develop IPM strategies against these pests to enhance gains in IPM that have been made with Bt-transgenic cotton. Progress in this area of research will maintain sustainability and profitability of the Australian cotton industry. Mirid damage at early growth stages of cotton (up to squaring stage) has been studied in detail by Dr Khan. He found that all ages of mirids cause damage to young plants and damage by mirid nymphs is cumulative. Maximum damage occurs when the insect reaches the 4th and 5th nymphal stages. He also found that mirid feeding causes shedding of small and medium squares, and damaged large squares develop as ‘parrot beak’ bolls. Detailed studies at the boll stage, such as which stage of mirids is most damaging or which age boll is most vulnerable to feeding, is lacking. This information is a prerequisite to developing an IPM strategy for the pest in later crop growth stages. Understanding population change of the pest over time in relation to crop development is an important aspect for developing management strategies for the pest which is lacking for mirids in BollgardII. Predators and parasitoids are integral components of any IPM system and play an important part in regulating pest populations. Some generalist predators such as ants, spiders, damsel bugs and assassin bugs are known to predate on mirids. Nothing is known about parasitoids of mirids. Since green mirid (GM), Creontiades dilutus, is indigenous to Australia it is likely that we have one or more parasitoids of this mirid in Australia, but that possibility has not been investigated yet. The impact of the GVB adult parasitoid, Trichopoda giacomelli, has been studied by Dr Khan who found that the fly is established in the released areas and continues to spread. However, to get wider and greater impact, the fly should be released in new locations across the valleys. The insecticides registered for mirids and stinkbugs are mostly non-selective and are extremely disruptive to a wide range of beneficial insects. Use of these insecticides at stage I and II will minimise the impact of existing IPM programs. Therefore less disruptive control tactics including soft chemicals for mirids and stinkbugs are necessary. As with soft chemicals, salt mixtures, biopesticides based on fungal pathogens and attractants based on plant volatiles may be useful tools in managing mirids and stinkbugs with less or no disruption. Dr Khan has investigated salt mixture against mirids and GVB. While salt mixtures are quite effective and less disruptive, they are quite chemical specific. Not all chemicals mixed with salt will give the desired benefit. Therefore further investigation is needed to identify those chemicals that are effective with salt mixture against mirids and 3 of 37 GVB. Dr Caroline Hauxwell of DPI&F is working on fungal pathogen-based biopesticides against mirids and GVB and Drs Peter Gregg and Alice Del Socorro of Australian Cotton CRC are working on plant volatile-based attractants against mirids. Depending on their findings, inclusion of fungal-based biopestcides and plant volatile-based attractants in developing a management system against mirids and stinkbugs in cotton could be an important component of an IPM approach.
Resumo:
The economic analysis is based on the A, B, C and D management practice framework for water quality improvement developed in 2007/2008 by the respective natural resource management region. The Mackay Whitsunday ABCD management framework for sugarcane management practices was published in 2009 by the Department of Primary Industries & Fisheries (DPI&F), following the original version that was published in the Water Quality Improvement Plan: final report for Mackay Whitsunday region (2008).
Resumo:
The economic analysis is based on the A, B, C and D management practice framework for water quality improvement developed in 2007/2008 by the respective natural resource management region. This document focuses on the economic implications of these management practices in the Burdekin Delta region. A review of the management practices is currently being undertaken to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics.
Resumo:
Conservation and sustainable management of tropical forests needs a holistic approach: in addition to ecological concerns, socio-economic issues including cultural aspects must be taken into consideration. An ability to adapt practices is a key to successful collaborative natural resource management. Achieving this requires local participation and understanding of local conceptions of the environment. This study examined these issues in the context of northern Thailand. Northern uplands are the home of much of the remaining natural forest in Thailand and several ethnic minority groups commonly referred to as hill tribes. The overall purpose of this study was to grasp a regional view of an ethnically diverse forested area and to elicit prospects to develop community forestry for conservation purposes and for securing people s livelihood. Conservation was a central goal of management as the forests in the area were largely designated as protected. The aim was to study local perceptions, objectives, values and practices of forest management, under the umbrella of the concept environmental literacy, as well as the effects of forest policy on community management goals and activities. Environmental literacy refers to holistic understanding of the environment. It was used as a tool to examine people s views, interests, knowledge and motivation associated to forests. The material for this study was gathered in six villages in Chiang Mai Province. Three minority groups were included in the study, the Karen, Hmong and Lawa, and also the Thai. Household and focus group interviews were conducted in the villages. In addition, officials at district, regional and national levels, workers of non-governmental organisations, and academics were interviewed, and some data were gathered from the students of a local school. The results showed that motivation for protecting the forests existed among each ethnic group studied. This was a result of culture and traditions evolved in the forest environment but also of a need to adapt to a changed situation and environment and to outside pressures. The consequences of deforestation were widely agreed on in the villages, and the impact of socio-economic changes on the forests and livelihood was also recognised. The forest was regarded as a source of livelihood providing land, products and services essential to the people inhabiting rural uplands. Traditions, fire control, cooperation, reforestation, separation of protected and utilisable areas, and rules were viewed as central for conservation. For the villagers, however, conservation meant sustainable use, whereas the government has tended to prefer strict restrictions on forest resource use. Thus, conflicts had arisen. Between communities, cooperation was more dominant than conflict. The results indicated that the heterogeneity of forest dwellers, although it has to be recognised, should not be overemphasised: ethnic diversity can be considered as no major obstacle for successful community forestry. Collaborative management is particularly important in protected areas in order to meet the conservation goals while providing opportunities for livelihood. Forest management needs more positive incentives and increased dialogue.
Resumo:
Oreochromis mossambicus (Peters 1852) are native to the eastward flowing rivers of central and southern Africa but from the early 1930s they have been widely distributed around the world for aquaculture and for biological control of weeds and insects. While O. mossambicus are now not commonly used as an aquaculture species, the biological traits that made them a popular culture species including tolerance to wide ranging ecological conditions, generalist dietary requirements and rapid reproduction with maternal care have also made them a 'model' invader. Self-sustaining populations now exist in almost every region to which they have been imported. In Australia, since their introduction in the 1970s, O. mossambicus have become established in catchments along the east and west coasts and have the potential to colonise other adjacent drainages. It is thought that intentional translocations are likely to be the most significant factor in their spread in Australia. The ecological and physical tolerances and preferences, reproductive behaviour, hybridization and the high degree of plasticity in the life history traits of O. mossambicus are reviewed. Impacts of O. mossambicus on natural ecosystems including competitive displacement of native species, habitat alteration, predation and as a vector in the spread of diseases are discussed. Potential methods for eradicating or controlling invasive populations of O. mossambicus including physical removal, piscicides, screens, environmental management and genetic technologies are outlined.
Resumo:
Southern Hemisphere plantation forestry has grown substantially over the past few decades and will play an increasing role in fibre production and carbon sequestration in future. The sustainability of these plantations is, however, increasingly under pressure from introduced pests. This pressure requires an urgent and matching increase in the speed and efficiency at which tools are developed to monitor and control these pests. To consider the potential role of semiochemicals to address the need for more efficient pest control in Southern Hemisphere plantations, particularly by drawing from research in other parts of the world. Semiochemical research in forestry has grown exponentially over the last 40 years but has been almost exclusively focussed on Northern Hemisphere forests. In these forests, semiochemicals have played an important role to enhance the efficiency of integrated pest management programmes. An analysis of semiochemical research from 1970 to 2010 showed a rapid increase over time. It also indicated that pheromones have been the most extensively studied type of semiochemical in forestry, contributing to 92% of the semiochemical literature over this period, compared with research on plant kairomones. This research has led to numerous applications in detection of new invasions, monitoring population levels and spread, in addition to controlling pests by mass trapping or disrupting of aggregation and mating signals. The value of semiochemicals as an environmentally benign and efficient approach to managing forest plantation pests in the Southern Hemisphere seems obvious. There is, however, a lack of research capacity and focus to optimally capture this opportunity. Given the pressure from increasing numbers of pests and reduced opportunities to use pesticides, there is some urgency to develop semiochemical research capacity.
Resumo:
The global importance of grasslands is indicated by their extent; they comprise some 26% of total land area and 80% of agriculturally productive land. The majority of grasslands are located in tropical developing countries where they are particularly important to the livelihoods of some one billion poor peoples. Grasslands clearly provide the feed base for grazing livestock and thus numerous high-quality foods, but such livestock also provide products such as fertilizer, transport, traction, fibre and leather. In addition, grasslands provide important services and roles including as water catchments, biodiversity reserves, for cultural and recreational needs, and potentially a carbon sink to alleviate greenhouse gas emissions. Inevitably, such functions may conflict with management for production of livestock products. Much of the increasing global demand for meat and milk, particularly from developing countries, will have to be supplied from grassland ecosystems, and this will provide difficult challenges. Increased production of meat and milk generally requires increased intake of metabolizable energy, and thus increased voluntary intake and/or digestibility of diets selected by grazing animals. These will require more widespread and effective application of improved management. Strategies to improve productivity include fertilizer application, grazing management, greater use of crop by-products, legumes and supplements and manipulation of stocking rate and herbage allowance. However, it is often difficult to predict the efficiency and cost-effectiveness of such strategies, particularly in tropical developing country production systems. Evaluation and on-going adjustment of grazing systems require appropriate and reliable assessment criteria, but these are often lacking. A number of emerging technologies may contribute to timely low-cost acquisition of quantitative information to better understand the soil-pasture-animal interactions and animal management in grassland systems. Development of remote imaging of vegetation, global positioning technology, improved diet markers, near IR spectroscopy and modelling provide improved tools for knowledge-based decisions on the productivity constraints of grazing animals. Individual electronic identification of animals offers opportunities for precision management on an individual animal basis for improved productivity. Improved outcomes in the form of livestock products, services and/or other outcomes from grasslands should be possible, but clearly a diversity of solutions are needed for the vast range of environments and social circumstances of global grasslands.
Resumo:
Despite of improving levels of hygiene, the incidence of registered food borne disease has been at the same level for many years: there were 40 to 90 epidemics in which 1000-9000 persons contracted food poisoning through food or drinking water in Finland. Until the year 2004 salmonella and campylobacter were the most common bacterial causes of food borne diseases, but in years 2005-2006 Bacillus cereus was the most common. Similar developement has been published i.e. in Germany already in the 1990´s. One reason for this can be Bacillus cereus and its emetic toxin, cereulide. Bacillus cereus is a common environmental bacterium that contaminates raw materials of food. Otherwise than salmonella and campylobacter, Bacillus cereus is a heat resistant bacterium, capable of surviving most cooking procedures due to the production of highly thermo resistant spores. The food involved has usually been heat treated and surviving spores are the source of the food poisoning. The heat treatment induces germination of the spore and the vegetative cells then produce toxins. This doctoral thesis research focuses on developing methods for assessing and eliminating risks to food safety by cereulide producing Bacillus cereus. The biochemistry and physiology of cereulide production was investigated and the results were targeted to offer tools for minimizing toxin risk in food during the production. I developed methods for the extraction and quantitative analysis of cereulide directly from food. A prerequisite for that is knowledge of the chemical and physical properties of the toxin. Because cereulide is practically insoluble in water, I used organic solvents; methanol, ethanol and pentane for the extraction. For extraction of bakery products I used high temperature (100C) and pressure (103.4 bars). Alternaties for effective extraction is to flood the plain food with ethanol, followed by stationary equilibration at room temperature. I used this protocol for extracting cereulide from potato puree and penne. Using this extraction method it is also possible also extract cereulide from liquid food, like milk. These extraction methods are important improvement steps for studying of Bacillus cereus emetic food poisonings. Prior my work, cereulide extraction was done using water. As the result, the yield was poor and variable. To investigate suspected food poisonings, it is important to show actual toxicity of the incriminated food. Many toxins, but not cereulide, inactivate during food processing like heating. The next step is to identify toxin by chemical methods. I developed with my colleague Maria Andesson a rapid assay for the detection of cereulide toxicity, within 5 to 15 minutes. By applying this test it is possible to rapidly detect which food was causing the food poisoning. The chemical identification of cereulide was achieved using mass spectrometry. I used cereulide specific molecular ions, m/z (+/-0.3) 1153.8 (M+H+), 1171.0 (M+NH4+), 1176.0 (M+Na+) and 1191.7 (M+K+) for reliable identification. I investigated foods to find out their amenability to accumulate cereulide. Cereulide was formed high amounts (0.3 to 5.5 microg/g wet wt) when of cereulide producing B. cereus strains were present in beans, rice, rice-pastry and meat-pastry, if stored at non refrigerated temperatures (21-23C). Rice and meat pastries are frequently consumed under conditions where no cooled storage is available e.g. picnics and outdoor events. Bacillus cereus is a ubiquitous spore former and is therefore difficult to eliminate from foods. It is therefore important to know which conditions will affect the formation of cereulide in foods. My research showed that the cereulide content was strongly (10 to 1000 fold differences in toxin content) affected by the growth environment of the bacterium. Storage of foods under nitrogen atmosphere (> 99.5 %) prevented the production of cereulide. But when also carbon dioxide was present, minimizing the oxygen contant (< 1%) did not protect the food from formation of cereulide in preliminary experiments. Also food supplements affected cereulide production at least in the laboratory. Adding free amino acids, leucine and valine, stimulated cereulide production 10 to 20 fold. In peptide bonded form these amino acids are natural constituents in all proteins. Interestingly, adding peptide bonded leucine and valine had no significant effect on cereulide production. Free amino acids leucine and valine are approved food supplements and widely used as flawour modifiers in food technology. My research showed that these food supplements may increase food poisoning risk even though they are not toxic themselves.