996 resultados para Optimal habitat
Resumo:
Many problems in early vision are ill posed. Edge detection is a typical example. This paper applies regularization techniques to the problem of edge detection. We derive an optimal filter for edge detection with a size controlled by the regularization parameter $\\ lambda $ and compare it to the Gaussian filter. A formula relating the signal-to-noise ratio to the parameter $\\lambda $ is derived from regularization analysis for the case of small values of $\\lambda$. We also discuss the method of Generalized Cross Validation for obtaining the optimal filter scale. Finally, we use our framework to explain two perceptual phenomena: coarsely quantized images becoming recognizable by either blurring or adding noise.
Resumo:
We consider the question "How should one act when the only goal is to learn as much as possible?" Building on the theoretical results of Fedorov [1972] and MacKay [1992], we apply techniques from Optimal Experiment Design (OED) to guide the query/action selection of a neural network learner. We demonstrate that these techniques allow the learner to minimize its generalization error by exploring its domain efficiently and completely. We conclude that, while not a panacea, OED-based query/action has much to offer, especially in domains where its high computational costs can be tolerated.
Resumo:
Small failures should only disrupt a small part of a network. One way to do this is by marking the surrounding area as untrustworthy --- circumscribing the failure. This can be done with a distributed algorithm using hierarchical clustering and neighbor relations, and the resulting circumscription is near-optimal for convex failures.
Resumo:
We give a one-pass, O~(m^{1-2/k})-space algorithm for estimating the k-th frequency moment of a data stream for any real k>2. Together with known lower bounds, this resolves the main problem left open by Alon, Matias, Szegedy, STOC'96. Our algorithm enables deletions as well as insertions of stream elements.
Resumo:
Fluctuating light intensity had a more significant impact on growth of gametophytes of transgenic Laminaria japonica in a 2500 ml bubble-column bioreactor than constant light intensity. A fluctuating light intensity between 10 and 110 mu E m(-2) s(-1), with a photoperiod of 14 h:10 h light:dark, was the best regime for growth giving 1430 mg biomass l(-1).
Resumo:
In the present study, a method based on transmission-line mode for a porous electrode was used to measure the ionic resistance of the anode catalyst layer under in situ fuel cell operation condition. The influence of Nafion content and catalyst loading in the anode catalyst layer on the methanol electro-oxidation and direct methanol fuel cell (DMFC) performance based on unsupported Pt-Ru black was investigated by using the AC impedance method. The optimal Nafion content was found to be 15 wt% at 75 degrees C. The optimal Pt-Ru loading is related to the operating temperature, for example, about 2.0 mg/cm(2) for 75-90 degrees C, 3.0 mg/cm2 for 50 degrees C. Over these values, the cell performance decreased due to the increases in ohmic and mass transfer resistances. It was found that the peak power density obtained was 217 mW/cm(2) with optimal catalyst and Nafion loading at 75 degrees C using oxygen. (c) 2005 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Gough, John; Belavkin, V.P.; Smolianov, O.G., (2005) 'Hamilton?Jacobi?Bellman equations for quantum optimal feedback control', Journal of Optics B: Quantum and Semiclassical Optics 7 pp.S237-S244 RAE2008
Resumo:
Joern Fischer, David B. Lindermayer, and Ioan Fazey (2004). Appreciating Ecological Complexity: Habitat Contours as a Conceptual Landscape Model. Conservation Biology, 18 (5)pp.1245-1253 RAE2008
Resumo:
Dynamic service aggregation techniques can exploit skewed access popularity patterns to reduce the costs of building interactive VoD systems. These schemes seek to cluster and merge users into single streams by bridging the temporal skew between them, thus improving server and network utilization. Rate adaptation and secondary content insertion are two such schemes. In this paper, we present and evaluate an optimal scheduling algorithm for inserting secondary content in this scenario. The algorithm runs in polynomial time, and is optimal with respect to the total bandwidth usage over the merging interval. We present constraints on content insertion which make the overall QoS of the delivered stream acceptable, and show how our algorithm can satisfy these constraints. We report simulation results which quantify the excellent gains due to content insertion. We discuss dynamic scenarios with user arrivals and interactions, and show that content insertion reduces the channel bandwidth requirement to almost half. We also discuss differentiated service techniques, such as N-VoD and premium no-advertisement service, and show how our algorithm can support these as well.
Resumo:
Hidden State Shape Models (HSSMs) [2], a variant of Hidden Markov Models (HMMs) [9], were proposed to detect shape classes of variable structure in cluttered images. In this paper, we formulate a probabilistic framework for HSSMs which provides two major improvements in comparison to the previous method [2]. First, while the method in [2] required the scale of the object to be passed as an input, the method proposed here estimates the scale of the object automatically. This is achieved by introducing a new term for the observation probability that is based on a object-clutter feature model. Second, a segmental HMM [6, 8] is applied to model the "duration probability" of each HMM state, which is learned from the shape statistics in a training set and helps obtain meaningful registration results. Using a segmental HMM provides a principled way to model dependencies between the scales of different parts of the object. In object localization experiments on a dataset of real hand images, the proposed method significantly outperforms the method of [2], reducing the incorrect localization rate from 40% to 15%. The improvement in accuracy becomes more significant if we consider that the method proposed here is scale-independent, whereas the method of [2] takes as input the scale of the object we want to localize.
Resumo:
It is a neural network truth universally acknowledged, that the signal transmitted to a target node must be equal to the product of the path signal times a weight. Analysis of catastrophic forgetting by distributed codes leads to the unexpected conclusion that this universal synaptic transmission rule may not be optimal in certain neural networks. The distributed outstar, a network designed to support stable codes with fast or slow learning, generalizes the outstar network for spatial pattern learning. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field, of arbitrarily many nodes, where the activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse whereby a path weight decreases in joint proportion to the transmittcd path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals three types of synaptic transmission, a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all when source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the optimal unit of long-term memory in such a system is a subtractive threshold, rather than a multiplicative weight.
Resumo:
This paper demonstrates an optimal control solution to change of machine set-up scheduling based on dynamic programming average cost per stage value iteration as set forth by Cararnanis et. al. [2] for the 2D case. The difficulty with the optimal approach lies in the explosive computational growth of the resulting solution. A method of reducing the computational complexity is developed using ideas from biology and neural networks. A real time controller is described that uses a linear-log representation of state space with neural networks employed to fit cost surfaces.
Resumo:
Genetic Algorithms (GAs) make use of an internal representation of a given system in order to perform optimization functions. The actual structural layout of this representation, called a genome, has a crucial impact on the outcome of the optimization process. The purpose of this paper is to study the effects of different internal representations in a GA, which generates neural networks. A second GA was used to optimize the genome structure. This structure produces an optimized system within a shorter time interval.
Resumo:
The performance of an RF output matching network is dependent on integrity of the ground connection. If this connection is compromised in anyway, additional parasitic elements may occur that can degrade performance and yield unreliable results. Traditionally, designers measure Constant Wave (CW) power to determine that the RF chain is performing optimally, the device is properly matched and by implication grounded. It is shown that there are situations where modulation quality can be compromised due to poor grounding that is not apparent using CW power measurements alone. The consequence of this is reduced throughput, range and reliability. Measurements are presented on a Tyndall Mote using a CC2420 RFIC todemonstrate how poor solder contact between the ground contacts and the ground layer of the PCB can lead tothe degradation of modulated performance. Detailed evaluation that required the development of a new measurement definition for 802.15.4 and analysis is presented to show how waveform quality is affected while the modulated output power remains within acceptable limits.
Resumo:
Choosing the right or the best option is often a demanding and challenging task for the user (e.g., a customer in an online retailer) when there are many available alternatives. In fact, the user rarely knows which offering will provide the highest value. To reduce the complexity of the choice process, automated recommender systems generate personalized recommendations. These recommendations take into account the preferences collected from the user in an explicit (e.g., letting users express their opinion about items) or implicit (e.g., studying some behavioral features) way. Such systems are widespread; research indicates that they increase the customers' satisfaction and lead to higher sales. Preference handling is one of the core issues in the design of every recommender system. This kind of system often aims at guiding users in a personalized way to interesting or useful options in a large space of possible options. Therefore, it is important for them to catch and model the user's preferences as accurately as possible. In this thesis, we develop a comparative preference-based user model to represent the user's preferences in conversational recommender systems. This type of user model allows the recommender system to capture several preference nuances from the user's feedback. We show that, when applied to conversational recommender systems, the comparative preference-based model is able to guide the user towards the best option while the system is interacting with her. We empirically test and validate the suitability and the practical computational aspects of the comparative preference-based user model and the related preference relations by comparing them to a sum of weights-based user model and the related preference relations. Product configuration, scheduling a meeting and the construction of autonomous agents are among several artificial intelligence tasks that involve a process of constrained optimization, that is, optimization of behavior or options subject to given constraints with regards to a set of preferences. When solving a constrained optimization problem, pruning techniques, such as the branch and bound technique, point at directing the search towards the best assignments, thus allowing the bounding functions to prune more branches in the search tree. Several constrained optimization problems may exhibit dominance relations. These dominance relations can be particularly useful in constrained optimization problems as they can instigate new ways (rules) of pruning non optimal solutions. Such pruning methods can achieve dramatic reductions in the search space while looking for optimal solutions. A number of constrained optimization problems can model the user's preferences using the comparative preferences. In this thesis, we develop a set of pruning rules used in the branch and bound technique to efficiently solve this kind of optimization problem. More specifically, we show how to generate newly defined pruning rules from a dominance algorithm that refers to a set of comparative preferences. These rules include pruning approaches (and combinations of them) which can drastically prune the search space. They mainly reduce the number of (expensive) pairwise comparisons performed during the search while guiding constrained optimization algorithms to find optimal solutions. Our experimental results show that the pruning rules that we have developed and their different combinations have varying impact on the performance of the branch and bound technique.