884 resultados para Optimal control problem
Resumo:
The recent years have seen the appearance of innovative system for acoustic and vibration attenuation, most of them integrating new actuator technologies. In this sense, the study of algorithms for active vibrations control in rotating machinery became an area of enormous interest, mainly due to countless demands of an optimal performance of mechanical systems in aircraft, aerospace and automotive structures. In this way, this paper presents an approach that is numerically verified for active vibration control in a rotor using Active Magnetic Bearings (AMB). The control design in a discrete state-space formulation is carried out through feedback technique and Linear Matrix Inequalities (LMI) approach. LMI is useful for system with uncertainties. The AMB uses electromagnetic forces to support a rotor without mechanical contact. By monitoring the position of the shaft and changing the dynamics of the system accordingly, the AMB keeps the rotor in a desired position. This unique feature has broadened for the applications of AMB and now they can be considered not only as a main support bearing in a machine but also as dampers for vibration control and force actuators. © 2009 Society for Experimental Mechanics Inc.
Resumo:
The rule creation to clone selection in different projects is a hard task to perform by using traditional implementations to control all the processes of the system. The use of an algebraic language is an alternative approach to manage all of system flow in a flexible way. In order to increase the power of versatility and consistency in defining the rules for optimal clone selection, this paper presents the software OCI 2 in which uses process algebra in the flow behavior of the system. OCI 2, controlled by an algebraic approach was applied in the rules elaboration for clone selection containing unique genes in the partial genome of the bacterium Bradyrhizobium elkanii Semia 587 and in the whole genome of the bacterium Xanthomonas axonopodis pv. citri. Copyright© (2009) by the International Society for Research in Science and Technology.
Resumo:
In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.
Resumo:
A bilevel programming approach for the optimal contract pricing of distributed generation (DG) in distribution networks is presented. The outer optimization problem corresponds to the owner of the DG who must decide the contract price that would maximize his profits. The inner optimization problem corresponds to the distribution company (DisCo), which procures the minimization of the payments incurred in attending the expected demand while satisfying network constraints. The meet the expected demand the DisCo can purchase energy either form the transmission network through the substations or form the DG units within its network. The inner optimization problem is substituted by its Karush- Kuhn-Tucker optimality conditions, turning the bilevel programming problem into an equivalent single-level nonlinear programming problem which is solved using commercially available software. © 2010 IEEE.
Resumo:
This paper proposes a cluster partitioning technique to calculate improved upper bounds to the optimal solution of maximal covering location problems. Given a covering distance, a graph is built considering as vertices the potential facility locations, and with an edge connecting each pair of facilities that attend a same client. Coupling constraints, corresponding to some edges of this graph, are identified and relaxed in the Lagrangean way, resulting in disconnected subgraphs representing smaller subproblems that are computationally easier to solve by exact methods. The proposed technique is compared to the classical approach, using real data and instances from the available literature. © 2010 Edson Luiz França Senne et al.
Resumo:
This paper presents a new methodology for solving the optimal VAr planning problem in multi-area electric power systems, using the Dantzig-Wolfe decomposition. The original multi-area problem is decomposed into subproblems (one for each area) and a master problem (coordinator). The solution of the VAr planning problem in each area is based on the application of successive linear programming, and the coordination scheme is based on the reactive power marginal costs in the border bus. The aim of the model is to provide coordinated mechanisms to carry out the VAr planning studies maximizing autonomy and confidentiality for each area, assuring global economy to the whole system. Using the mathematical model and computational implementation of the proposed methodology, numerical results are presented for two interconnected systems, each of them composed of three equal subsystems formed by IEEE30 and IEEE118 test systems. © 2011 IEEE.
Resumo:
Problems as voltage increase at the end of a feeder, demand supply unbalance in a fault condition, power quality decline, increase of power losses, and reduction of reliability levels may occur if Distributed Generators (DGs) are not properly allocated. For this reason, researchers have been employed several solution techniques to solve the problem of optimal allocation of DGs. This work is focused on the ancillary service of reactive power support provided by DGs. The main objective is to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). The LOC will be determined for different allocation alternatives of DGs as a result of a multi-objective optimization process, aiming the minimization of losses in the lines of the system and costs of active power generation from DGs, and the maximization of the static voltage stability margin of the system. The effectiveness of the proposed methodology in improving the goals outlined was demonstrated using the IEEE 34 bus distribution test feeder with two DGs cosidered to be allocated. © 2011 IEEE.
Resumo:
This work proposes a methodology for optimized allocation of switches for automatic load transfer in distribution systems in order to improve the reliability indexes by restoring such systems which present voltage classes of 23 to 35 kV and radial topology. The automatic switches must be allocated on the system in order to transfer load remotely among the sources at the substations. The problem of switch allocation is formulated as nonlinear constrained mixed integer programming model subject to a set of economical and physical constraints. A dedicated Tabu Search (TS) algorithm is proposed to solve this model. The proposed methodology is tested for a large real-life distribution system. © 2011 IEEE.
Resumo:
This paper presents the generation of optimal trajectories by genetic algorithms (GA) for a planar robotic manipulator. The implemented GA considers a multi-objective function that minimizes the end-effector positioning error together with the joints angular displacement and it solves the inverse kinematics problem for the trajectory. Computer simulations results are presented to illustrate this implementation and show the efficiency of the used methodology producing soft trajectories with low computing cost. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
Here, a simplified dynamical model of a magnetically levitated body is considered. The origin of an inertial Cartesian reference frame is set at the pivot point of the pendulum on the levitated body in its static equilibrium state (ie, the gap between the magnet on the base and the magnet on the body, in this state). The governing equations of motion has been derived and the characteristic feature of the strategy is the exploitation of the nonlinear effect of the inertial force associated, with the motion of a pendulum-type vibration absorber driven, by an appropriate control torque [4]. In the present paper, we analyzed the nonlinear dynamics of problem, discussed the energy transfer between the main system and the pendulum in time, and developed State Dependent Riccati Equation (SDRE) control design to reducing the unstable oscillatory movement of the magnetically levitated body to a stable fixed point. The simulations results showed the effectiveness of the (SDRE) control design. Copyright © 2011 by ASME.
Resumo:
In last decades, control of nonlinear dynamic systems became an important and interesting problem studied by many authors, what results the appearance of lots of works about this subject in the scientific literature. In this paper, an Atomic Force Microscope micro cantilever operating in tapping mode was modeled, and its behavior was studied using bifurcation diagrams, phase portraits, time history, Poincare maps and Lyapunov exponents. Chaos was detected in an interval of time; those phenomena undermine the achievement of accurate images by the sample surface. In the mathematical model, periodic and chaotic motion was obtained by changing parameters. To control the chaotic behavior of the system were implemented two control techniques. The SDRE control (State Dependent Riccati Equation) and Time-delayed feedback control. Simulation results show the feasibility of the bothmethods, for chaos control of an AFM system. Copyright © 2011 by ASME.
Resumo:
This paper addresses the H ∞ state-feedback control design problem of discretetime Markov jump linear systems. First, under the assumption that the Markov parameter is measured, the main contribution is on the LMI characterization of all linear feedback controllers such that the closed loop output remains bounded by a given norm level. This results allows the robust controller design to deal with convex bounded parameter uncertainty, probability uncertainty and cluster availability of the Markov mode. For partly unknown transition probabilities, the proposed design problem is proved to be less conservative than one available in the current literature. An example is solved for illustration and comparisons. © 2011 IFAC.
Resumo:
This paper presents a mixed-integer linear programming approach to solving the optimal fixed/switched capacitors allocation (OCA) problem in radial distribution systems with distributed generation. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system and one real distribution system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. © 2011 IEEE.
Resumo:
This paper proposes a new strategy to reduce the combinatorial search space of a mixed integer linear programming (MILP) problem. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) is employed to reduce the domain of the integer variables of the transportation model of the transmission expansion planning (TM-TEP) problem. This problem is a MILP and very difficult to solve specially for large scale systems. The branch and bound (BB) algorithm is used to solve the problem in both full and the reduced search space. The proposed method might be useful to reduce the search space of those kinds of MILP problems that a fast heuristic algorithm is available for finding local optimal solutions. The obtained results using some real test systems show the efficiency of the proposed method. © 2012 Springer-Verlag.
Resumo:
Deterministic Optimal Reactive Power Dispatch problem has been extensively studied, such that the demand power and the availability of shunt reactive power compensators are known and fixed. Give this background, a two-stage stochastic optimization model is first formulated under the presumption that the load demand can be modeled as specified random parameters. A second stochastic chance-constrained model is presented considering uncertainty on the demand and the equivalent availability of shunt reactive power compensators. Simulations on six-bus and 30-bus test systems are used to illustrate the validity and essential features of the proposed models. This simulations shows that the proposed models can prevent to the power system operator about of the deficit of reactive power in the power system and suggest that shunt reactive sourses must be dispatched against the unavailability of any reactive source. © 2012 IEEE.