919 resultados para Optical pattern recognition Data processing
Resumo:
Rapid elimination of cells undergoing programmed cell death (apoptosis) is vital to maintain tissue homeostasis. The phagocytic removal of apoptotic cells (AC) is mediated by innate immune molecules, professional phagocytes and amateur phagocytes that recognise "eat me" signals on the surface of the AC. CD14, a pattern recognition receptor expressed on macrophages, is widely known for its ability to recognise the pathogen-associated molecular pattern lipopolysaccharide (LPS) and promote inflammation. CD14 also mediates the binding and removal of AC, a process that is considered to be anti-inflammatory therefore suggesting CD14 is capable of producing two distinct ligand-dependent responses. Our work seeks to define the molecular mechanisms underlying the involvement of CD14 in the non-inflammatory clearance of AC. Here we describe three different differentiation strategies used to generate macrophages from the monocytic cell line THP-1. Whilst CD14 expression was increased in each macrophage model we demonstrate significant differences in the various macrophage models' abilities to respond to LPS and clear AC. We show that CD14 expression correlates with CD14-dependent AC clearance and anti-inflammatory responses to AC. However LPS responsiveness correlates, as expected, with TLR4 but not CD14 expression. These observations suggest CD14-dependent AC clearance is not dependent on TLR4. Taken together our data support the notion that CD14 ligand-dependent responses to LPS and AC are derived from changes at the macrophage surface. The nature and composition of the CD14-co-receptor complex for LPS and AC binding and consequent responses is the subject of further study.
Resumo:
A variety of methods have been reviewed for obtaining parallel or perpendicular alignment in liquid-crystal cells. Some of these methods have been selected and developed and were used in polarised spectroscopy, dielectric and electro-optic studies. Also, novel dielectric and electro-optic cells were constructed for use over a range of temperature. Dielectric response of thin layers of E7 and E8 (eutectic mixture liquid-crystals) have been measured in the frequency range (12 Hz-100 kHz) and over a range of temperature (183-337K). Dielectric spectra were also obtained for supercooled E7 and E8 in the Hz and kHz range. When the measuring electric field was parallel to the nematic director, one loss peak (low-frequency relaxation process) was observed for E7 and for E8, that exhibits a Debye-type behaviour in the supercooled systems. When the measuring electric field was perpendicular to the nematic director, two resolved dielectric processes have been observed. The phase transitions, effective molecular polarisabilities, anisotropy of polarisabilities and order parameters of three liquid crystal homologs (5CB, 6CB, and 7CB), 60CB and three eutectic nematic mixtures E7, E8, and E607 were calculated using optical and density data measured at several temperatures. The order parameters calculated using the different methods of Vuks, Neugebauer, Saupe-Maier, and Palffy-Muhoray are nearly the same for the liquid crystals considered in the present study. Also, the interrelationship between density and refractive index and the molecular structure of these liquid crystals were established. Accurate dielectric and dipole results of a range of liquid-crystal forming molecules at several temperatures have reported. The role of the cyano-end group, biphenyl core, and flexible tail in molecular association, were investigated using the dielectric method for some molecules which have a structural relationship to the nematogens. Analysis of the dielectric data for solution of the liquid-crystals indicated a high molecular association, comparable to that observed in the nematic or isotropic phases. Electro-optic Kerr effect were investigated for some alkyl cyanobiphenyls, their nematic mixtures and the eutectic mixture liquid-crystals E7 and E8 in the isotropic phase and solution. The Kerr constant of these liquid crystals found to be very high at the nematic-isotropic transition temperatures as the molecules are expected to be highly ordered close to phase transition temperatures. Dynamic Kerr effect behaviour and transient molecular reorientation were also observed in thin layers of some alkyl cyanobiphenyls. Dichroic ratio R and order parameters of solutions containing some azo and anthraquinone dyes in the nematic solvent (E7 and E8), were investigated by the measurement of the intensity of the absorption bands in the visible region of parallel aligned samples. The effective factors on the dichroic ratio of the dyes dissolved in the nematic solvents were determined and discussed.
Resumo:
This thesis seeks to describe the development of an inexpensive and efficient clustering technique for multivariate data analysis. The technique starts from a multivariate data matrix and ends with graphical representation of the data and pattern recognition discriminant function. The technique also results in distances frequency distribution that might be useful in detecting clustering in the data or for the estimation of parameters useful in the discrimination between the different populations in the data. The technique can also be used in feature selection. The technique is essentially for the discovery of data structure by revealing the component parts of the data. lhe thesis offers three distinct contributions for cluster analysis and pattern recognition techniques. The first contribution is the introduction of transformation function in the technique of nonlinear mapping. The second contribution is the us~ of distances frequency distribution instead of distances time-sequence in nonlinear mapping, The third contribution is the formulation of a new generalised and normalised error function together with its optimal step size formula for gradient method minimisation. The thesis consists of five chapters. The first chapter is the introduction. The second chapter describes multidimensional scaling as an origin of nonlinear mapping technique. The third chapter describes the first developing step in the technique of nonlinear mapping that is the introduction of "transformation function". The fourth chapter describes the second developing step of the nonlinear mapping technique. This is the use of distances frequency distribution instead of distances time-sequence. The chapter also includes the new generalised and normalised error function formulation. Finally, the fifth chapter, the conclusion, evaluates all developments and proposes a new program. for cluster analysis and pattern recognition by integrating all the new features.
Resumo:
This thesis describes the development of a complete data visualisation system for large tabular databases, such as those commonly found in a business environment. A state-of-the-art 'cyberspace cell' data visualisation technique was investigated and a powerful visualisation system using it was implemented. Although allowing databases to be explored and conclusions drawn, it had several drawbacks, the majority of which were due to the three-dimensional nature of the visualisation. A novel two-dimensional generic visualisation system, known as MADEN, was then developed and implemented, based upon a 2-D matrix of 'density plots'. MADEN allows an entire high-dimensional database to be visualised in one window, while permitting close analysis in 'enlargement' windows. Selections of records can be made and examined, and dependencies between fields can be investigated in detail. MADEN was used as a tool for investigating and assessing many data processing algorithms, firstly data-reducing (clustering) methods, then dimensionality-reducing techniques. These included a new 'directed' form of principal components analysis, several novel applications of artificial neural networks, and discriminant analysis techniques which illustrated how groups within a database can be separated. To illustrate the power of the system, MADEN was used to explore customer databases from two financial institutions, resulting in a number of discoveries which would be of interest to a marketing manager. Finally, the database of results from the 1992 UK Research Assessment Exercise was analysed. Using MADEN allowed both universities and disciplines to be graphically compared, and supplied some startling revelations, including empirical evidence of the 'Oxbridge factor'.
Resumo:
Deep hole drilling is one of the most complicated metal cutting processes and one of the most difficult to perform on CNC machine-tools or machining centres under conditions of limited manpower or unmanned operation. This research work investigates aspects of the deep hole drilling process with small diameter twist drills and presents a prototype system for real time process monitoring and adaptive control; two main research objectives are fulfilled in particular : First objective is the experimental investigation of the mechanics of the deep hole drilling process, using twist drills without internal coolant supply, in the range of diarneters Ø 2.4 to Ø4.5 mm and working length up to 40 diameters. The definition of the problems associated with the low strength of these tools and the study of mechanisms of catastrophic failure which manifest themselves well before and along with the classic mechanism of tool wear. The relationships between drilling thrust and torque with the depth of penetration and the various machining conditions are also investigated and the experimental evidence suggests that the process is inherently unstable at depths beyond a few diameters. Second objective is the design and implementation of a system for intelligent CNC deep hole drilling, the main task of which is to ensure integrity of the process and the safety of the tool and the workpiece. This task is achieved by means of interfacing the CNC system of the machine tool to an external computer which performs the following functions: On-line monitoring of the drilling thrust and torque, adaptive control of feed rate, spindle speed and tool penetration (Z-axis), indirect monitoring of tool wear by pattern recognition of variations of the drilling thrust with cumulative cutting time and drilled depth, operation as a data base for tools and workpieces and finally issuing of alarms and diagnostic messages.
Resumo:
A navigation and positioning system for an electric automatic guided vehicle has been designed and implemented on an industrial pallet truck. The system includes an optical sensor mounted on the vehicle, capable of recognizing special markers at a distance of 0.3m. Software implemented in a z-80 microprocessor controls the sensor, performs all data processing and contains the decision making processes necessary for the vehicle to navigate its way to its task location. A second microprocessor is used to control the vehicle's drive motors under instruction from the navigation unit, to accurately position the vehicle at its destination. The sensor reliably recognises markers at vehicle speeds up to 1ms- 1, and the system has been integrated into a multiprocessor controlled wire-guidance system and applied to a prototype vehicle.
Resumo:
To represent the local orientation and energy of a 1-D image signal, many models of early visual processing employ bandpass quadrature filters, formed by combining the original signal with its Hilbert transform. However, representations capable of estimating an image signal's 2-D phase have been largely ignored. Here, we consider 2-D phase representations using a method based upon the Riesz transform. For spatial images there exist two Riesz transformed signals and one original signal from which orientation, phase and energy may be represented as a vector in 3-D signal space. We show that these image properties may be represented by a Singular Value Decomposition (SVD) of the higher-order derivatives of the original and the Riesz transformed signals. We further show that the expected responses of even and odd symmetric filters from the Riesz transform may be represented by a single signal autocorrelation function, which is beneficial in simplifying Bayesian computations for spatial orientation. Importantly, the Riesz transform allows one to weight linearly across orientation using both symmetric and asymmetric filters to account for some perceptual phase distortions observed in image signals - notably one's perception of edge structure within plaid patterns whose component gratings are either equal or unequal in contrast. Finally, exploiting the benefits that arise from the Riesz definition of local energy as a scalar quantity, we demonstrate the utility of Riesz signal representations in estimating the spatial orientation of second-order image signals. We conclude that the Riesz transform may be employed as a general tool for 2-D visual pattern recognition by its virtue of representing phase, orientation and energy as orthogonal signal quantities.
Resumo:
Structural analysis in handwritten mathematical expressions focuses on interpreting the recognized symbols using geometrical information such as relative sizes and positions of the symbols. Most existing approaches rely on hand-crafted grammar rules to identify semantic relationships among the recognized mathematical symbols. They could easily fail when writing errors occurred. Moreover, they assume the availability of the whole mathematical expression before being able to analyze the semantic information of the expression. To tackle these problems, we propose a progressive structural analysis (PSA) approach for dynamic recognition of handwritten mathematical expressions. The proposed PSA approach is able to provide analysis result immediately after each written input symbol. This has an advantage that users are able to detect any recognition errors immediately and correct only the mis-recognized symbols rather than the whole expression. Experiments conducted on 57 most commonly used mathematical expressions have shown that the PSA approach is able to achieve very good performance results.
Resumo:
Cells dying by apoptosis are normally cleared by phagocytes through mechanisms that can suppress inflammation and immunity. Molecules of the innate immune system, the pattern recognition receptors (PRRs), are able to interact not only with conserved structures on microbes (pathogen-associated molecular patterns, PAMPs) but also with ligands displayed by apoptotic cells. We reasoned that PRRs might therefore interact with structures on apoptotic cells-apoptotic cell-associated molecular patterns (ACAMPs)-that are analogous to PAMPs. Here we show that certain monoclonal antibodies raised against the prototypic PAMP, lipopolysaccharide (LPS), can crossreact with apoptotic cells. We demonstrate that one such antibody interacts with a constitutively expressed intracellular protein, laminin-binding protein, which translocates to the cell surface during apoptosis and can interact with cells expressing the prototypic PRR, mCD14 as well as with CD14-negative cells. Anti-LPS cross reactive epitopes on apoptotic cells colocalised with annexin V-and C1q-binding sites on vesicular regions of apoptotic cell surfaces and were released associated with apoptotic cell-derived microvesicles (MVs). These results confirm that apoptotic cells and microbes can interact with the immune system through common elements and suggest that anti-PAMP antibodies could be used strategically to characterise novel ACAMPs associated not only with apoptotic cells but also with derived MVs. © 2013 Macmillan Publishers Limited All rights reserved.
Resumo:
Effective clinical decision making depends upon identifying possible outcomes for a patient, selecting relevant cues, and processing the cues to arrive at accurate judgements of each outcome's probability of occurrence. These activities can be considered as classification tasks. This paper describes a new model of psychological classification that explains how people use cues to determine class or outcome likelihoods. It proposes that clinicians respond to conditional probabilities of outcomes given cues and that these probabilities compete with each other for influence on classification. The model explains why people appear to respond to base rates inappropriately, thereby overestimating the occurrence of rare categories, and a clinical example is provided for predicting suicide risk. The model makes an effective representation for expert clinical judgements and its psychological validity enables it to generate explanations in a form that is comprehensible to clinicians. It is a strong candidate for incorporation within a decision support system for mental-health risk assessment, where it can link with statistical and pattern recognition tools applied to a database of patients. The symbiotic combination of empirical evidence and clinical expertise can provide an important web-based resource for risk assessment, including multi-disciplinary education and training. © 2002 Informa UK Ltd All rights reserved.
Resumo:
Very often the experimental data are the realization of the process, fully determined by some unknown function, being distorted by hindrances. Treatment and experimental data analysis are substantially facilitated, if these data to represent as analytical expression. The experimental data processing algorithm and the example of using this algorithm for spectrographic analysis of oncologic preparations of blood is represented in this article.
Resumo:
Authors suggested earlier hierarchical method for definition of class description at pattern recognition problems solution. In this paper development and use of such hierarchical descriptions for parallel representation of complex patterns on the base of multi-core computers or neural networks is proposed.
Resumo:
The operation of technical processes requires increasingly advanced supervision and fault diagnostics to improve reliability and safety. This paper gives an introduction to the field of fault detection and diagnostics and has short methods classification. Growth of complexity and functional importance of inertial navigation systems leads to high losses at the equipment refusals. The paper is devoted to the INS diagnostics system development, allowing identifying the cause of malfunction. The practical realization of this system concerns a software package, performing a set of multidimensional information analysis. The project consists of three parts: subsystem for analyzing, subsystem for data collection and universal interface for open architecture realization. For a diagnostics improving in small analyzing samples new approaches based on pattern recognition algorithms voting and taking into account correlations between target and input parameters will be applied. The system now is at the development stage.
Resumo:
* The work is supported by RFBR, grant 04-01-00858-a
Resumo:
As is well known, the Convergence Theorem for the Recurrent Neural Networks, is based in Lyapunov ́s second method, which states that associated to any one given net state, there always exist a real number, in other words an element of the one dimensional Euclidean Space R, in such a way that when the state of the net changes then its associated real number decreases. In this paper we will introduce the two dimensional Euclidean space R2, as the space associated to the net, and we will define a pair of real numbers ( x, y ) , associated to any one given state of the net. We will prove that when the net change its state, then the product x ⋅ y will decrease. All the states whose projection over the energy field are placed on the same hyperbolic surface, will be considered as points with the same energy level. On the other hand we will prove that if the states are classified attended to their distances to the zero vector, only one pattern in each one of the different classes may be at the same energy level. The retrieving procedure is analyzed trough the projection of the states on that plane. The geometrical properties of the synaptic matrix W may be used for classifying the n-dimensional state- vector space in n classes. A pattern to be recognized is seen as a point belonging to one of these classes, and depending on the class the pattern to be retrieved belongs, different weight parameters are used. The capacity of the net is improved and the spurious states are reduced. In order to clarify and corroborate the theoretical results, together with the formal theory, an application is presented.