932 resultados para Operating ratios
Resumo:
A variety of evidence suggests that average sea surface temperatures (SSTs) during the last glacial maximum in the California Borderlands region were significantly colder than during the Holocene. Planktonic foraminiferal delta18O evidence and average SST estimates derived by the modern analog technique indicate that temperatures were 6°-10°C cooler during the last glacial relative to the present. The glacial plankton assemblage is dominated by the planktonic foraminifer Neogloboquadrina pachyderma (sinistral coiling) and the coccolith Coccolithus pelagicus, both of which are currently restricted to subpolar regions of the North Pacific. The glacial-interglacial average SST change determined in this study is considerably larger than the 2°C change estimated by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981]. We propose that a strengthened California Current flow was associated with the advance of subpolar surface waters into the Borderlands region during the last glacial.
Resumo:
The primary Mg/Ca ratio of foraminiferal shells is a potentially valuable paleoproxy for sea surface temperature (SST) reconstructions. However, the reliable extraction of this ratio from sedimentary calcite assumes that we can overcome artifacts related to foraminiferal ecology and partial dissolution, as well as contamination by secondary calcite and clay. The standard batch method for Mg/Ca analysis involves cracking, sonicating, and rinsing the tests to remove clay, followed by chemical cleaning, and finally acid-digestion and single-point measurement. This laborious procedure often results in substantial loss of sample (typically 30-60%). We find that even the earliest steps of this procedure can fractionate Mg from Ca, thus biasing the result toward a more variable and often anomalously low Mg/Ca ratio. Moreover, the more rigorous the cleaning, the more calcite is lost, and the more likely it becomes that any residual clay that has not been removed by physical cleaning will increase the ratio. These potentially significant sources of error can be overcome with a flow-through (FT) sequential leaching method that makes time- and labor-intensive pretreatments unnecessary. When combined with time-resolved analysis (FT-TRA) flow-through, performed with a gradually increasing and highly regulated acid strength, produces continuous records of Mg, Sr, Al, and Ca concentrations in the leachate sorted by dissolution susceptibility of the reacting material. Flow-through separates secondary calcite from less susceptible biogenic calcite and clay, and further resolves the biogenic component into primary and more resistant fractions. FT-TRA reliably separates secondary calcite (which is not representative of original life habitats) from the more resistant biogenic calcite (the desired signal) and clay (a contaminant of high Mg/Ca, which also contains Al), and further resolves the biogenic component into primary and more resistant fractions that may reflect habitat or other changes during ontogeny. We find that the most susceptible fraction of biogenic calcite in surface dwelling foraminifera gives the most accurate value for SST and therefore best represents primary calcite. Sequential dissolution curves can be used to correct the primary Mg/Ca ratio for clay, if necessary. However, the temporal separation of calcite from clay in FT-TRA is so complete that this correction is typically <=2%, even in clay-rich sediments. Unlike hands-on batch methods, that are difficult to reproduce exactly, flow-through lends itself to automation, providing precise replication of treatment for every sample. Our automated flow-through system can process 22 samples, two system blanks, and 48 mixed standards in <12 hours of unattended operation. FT-TRA thus represents a faster, cheaper, and better way to determine Mg/Ca ratios in foraminiferal calcite.
Resumo:
Lower ocean crust is primarily gabbroic, although 1-2% felsic igneous rocks that are referred to collectively as plagiogranites occur locally. Recent experimental evidence suggests that plagiogranite magmas can form by hydrous partial melting of gabbro triggered by seawater-derived fluids, and thus they may indicate early, high-temperature hydrothermal fluid circulation. To explore seawater-rock interaction prior to and during the genesis of plagiogranite and other late-stage magmas, oxygen-isotope ratios preserved in igneous zircon have been measured by ion microprobe. A total of 197 zircons from 43 plagiogranite, evolved gabbro, and hydrothermally altered fault rock samples have been analyzed. Samples originate primarily from drill core acquired during Ocean Drilling Program and Integrated Ocean Drilling Program operations near the Mid-Atlantic and Southwest Indian Ridges. With the exception of rare, distinctively luminescent rims, all zircons from ocean crust record remarkably uniform d18O with an average value of 5.2 ± 0.5 per mil (2SD). The average d18O(Zrc) would be in magmatic equilibrium with unaltered MORB [d18O(WR) ~5.6-5.7 per mil], and is consistent with the previously determined value for equilibrium with the mantle. The narrow range of measured d18O values is predicted for zircon crystallization from variable parent melt compositions and temperatures in a closed system, and provides no indication of any interactions between altered rocks or seawater and the evolved parent melts. If plagiogranite forms by hydrous partial melting, the uniform mantle-like d18O(Zrc) requires melting and zircon crystallization prior to significant amounts of water-rock interactions that alter the protolith d18O. Zircons from ocean crust have been proposed as a tectonic analog for >3.9 Ga detrital zircons from the earliest (Hadean) Earth by multiple workers. However, zircons from ocean crust are readily distinguished geochemically from zircons formed in continental crustal environments. Many of the >3.9 Ga zircons have mildly elevated d18O (6.0-7.5 per mil), but such values have not been identified in any zircons from the large sample suite examined here. The difference in d18O, in combination with newly acquired lithium concentrations and published trace element data, clearly shows that the >3.9 Ga detrital zircons did not originate by processes analogous to those in modern mid-ocean ridge settings.
Resumo:
Carbon, hydrogen, and oxygen isotope ratios determined on 32 squeezed interstitial fluid samples show remarkable variations with depth. For the most part these variations are related to diagenetic and alteration reactions taking place in the sediments, and in the underlying basalts. delta13C SumCO2 depth distributions at Sites 642 and 643 are the result of mixing of original SumCO2 of the paleo bottom water with SumCO2 released by remineralization of organic matter. At Site 644, where sulfate exhaustion occurs, the processes of methanogenesis by CO2 reduction and anaerobic methanotrophy strongly influence the delta13C SumCO2 distribution. Hydrogen and oxygen isotopes roughly covary, and become enriched in 16O and1H with depth. This effect is most pronounced at Sites 642 and 643, possibly due to the influence of the directly underlying basalts. Isotope depletions at Site 644 are much lower, corresponding to the greater sediment depth to basement. The alternative, that the O, H isotope shifts are due primarily to autochthonous diagenetic and exchange reactions, is not supported by the data available.
Resumo:
River discharge of Ob and Yenisei to the Kara Sea is highly variable on seasonal and interannual time scales. River water dominates the shallow bottom water near the river mouths, making it warmer and less saline but seasonally and interannually more changeable than bottom water on the deeper shelf. This hydrographic pattern shows up in measurements and modelling, and in stable isotope records (delta18O, delta13C) along the growth axis of bivalve shells and in multiple analyses of single benthic foraminiferal shells. Average isotope ratios increase, but sample-internal variability decreases with water depth and distance from river mouths. However, isotope records of bivalves and foraminifera of a sediment core from a former submarine channel of Yenisei River reveal a different pattern. The retreat of the river mouth from this site due to early Holocene sea level rise led to increasing average isotope values up core, but not to the expected decrease of the in-sample isotope variability. Southward advection of cold saline water along the palaeo-river channel probably obscured the hydrographic variability during the early Holocene. Later, when sediment filled the channel, the hydrographic variability at the core location remained low, because the shallowing proceeded synchronously with the retreat of the river mouth.
Resumo:
The Maastrichtian and Danian intervals of Ocean Drilling Program (ODP) Hole 738C contain numerous microfossils above the level of their putative extinction, suggesting either (1) persistence of local communities long after species turnover occurred across the rest of the globe or (2) large-scale reworking. These interpretations have very different paleoenvironmental implications, but discriminating between them has proved difficult. To test the competing hypotheses, we measured the 87Sr/86Sr ratios of taxon-specific separates from a number of samples and compared these values both to each other and to expected seawater values at the time of deposition. Our results indicate extensive and pervasive reworking throughout Maastrichtian and lower Danian strata in ODP Hole 738C. We estimate that up to 30% of the mass of foraminifers in any sample can be contributed by individuals that have been reworked.
Stable carbon and oxygen isotope ratios across the Cretaceous/Tertiary boundray on the Walvish Ridge
Resumo:
The isotopic composition and diversity of nannofossils were studied in cores from the Deep Sea Drilling Project (DSDP) Sites 525A, 527, 528, and 529 from the Walvis Ridge, South Atlantic to better understand the changes which occurred across the Cretaceous/Tertiary boundary (K/T boundary). The stratigraphic range of the samples is from the Arkhangelskiella cymbiformis Zone in the Maastrichtian to the Heliolithus kleinpelli Zone in the Danian. Nannofossil diversity was high (Shannon-Weaver diversity index, 'H= 2.5-3) in the late Cretaceous, but decreased sharply (H c. 1 ) across the K/T boundary. The delta13C values also decrease across the K/T boundary at the four sites, suggesting a reduction in surface productivity in the South Atlantic concomitant with the reduction in diversity. During the Danian, nannofossil diversity and delta13C show some recovery approximately 500-700 k.y. after the boundary event. However, not until 2.5 Ma after the boundary event did diversity become constant. Diversity values similar to those for the late Cretaceous were not attained again in the early Paleocene interval studied. Carbon isotopic compositions similar to those from the Cretaceous were not attained until 4.5 Ma after the K/T event.
Resumo:
A continuous age model for the brief climate excursion at the Paleocene-Eocene boundary has been constructed by assuming a constant flux of extraterrestrial 3He (3He[ET]) to the seafloor. 3He[ET] measurements from ODP Site 690 provide quantitative evidence for the rapid onset (
Resumo:
Millennial-scale paleoceanographic changes in the Bering Sea during the last 71 kyrs were reconstructed using geochemical and isotope proxies (biogenic opal, CaCO3, and total organic carbon (TOC), nitrogen and carbon isotopes of sedimentary organic matters) and microfossil (radiolaria and foraminifera) data from two cores (PC23A and PC24A) which were collected from the northern continental slope area at intermediate water depths. Biogenic opal and TOC contents were generally high with high sedimentation rates during the last deglaciation. Laminated sediment depositions during the Early-Holocene (EH) and Bølling-Allerød (BA) were closely related with the increased primary productivity recorded by high biogenic opal and TOC contents and high d15N values. Enhanced surface-water productivity was attributed to increased nutrient supply from strengthened Bering Slope Current (BSC) and from increased amount of glacial melt-water, resulting in high C/N ratios and low d13C values, and high proportion of Rhizoplegma boreale during the last deglaciation. In contrast, low surface-water productivity during the last glacial period was due to depleted nutrient supply caused by strong stratification and to restricted phytoplankton bloom by extensive sea ice distribution under cold climates. Extensive formation of sea ice produces more oxygen-rich intermediate-water, leading to oxic bottom-water conditions due to active ventilation, which favored good preservation of oxic benthic foraminifera species. Remarkable CaCO3 peaks coeval with high biogenic opal and TOC contents in both cores during MIS 3 to MIS 4 are most likely correlated with Dansgaard-Oeschger (D-O) events. High d15N and d13Corg values during D-O interstadials support increased surface-water productivity resulting from nutrients supplied mainly by intensified BSC. During the EH, BA and D-O interstadials, dominant benthic foraminifera species indicate dysoxic bottom-water conditions as a result of increased surface-water productivity and weak ventilation of intermediate-water with mitigated sea ice development caused by strengthening of the Alaskan Stream. It is of note that the bottom-water conditions and formation of intermediate-water in the Bering Sea during the last glacial period are related to the variation of dissolved oxygen concentration of the bottom-water in the northeastern Pacific and to strong ventilation of intermediate-water in the northwestern Pacific. Thus, the millennial-scale paleoceanographic events in the Bering Sea during the D-O interstadials are closely associated with the intermediate-water ventilation, ultimately leading to weakening of North Pacific Intermediate Water.
Resumo:
Instrumental data suggest that major shifts in tropical Pacific atmospheric dynamics and hydrology have occurred within the past century, potentially in response to anthropogenic warming. To better understand these trends, we use the hydrogen isotopic ratios of terrestrial higher plant leaf waxes (DDwax) in marine sediments from southwest Sulawesi, Indonesia, to compile a detailed reconstruction of central Indo-Pacific Warm Pool (IPWP) hydrologic variability spanning most of the last two millennia. Our paleodata are highly correlated with a monsoon reconstruction from Southeast Asia, indicating that intervals of strong East Asian summer monsoon (EASM) activity are associated with a weaker Indonesian monsoon (IM). Furthermore, the centennial-scale oscillations in our data follow known changes in Northern Hemisphere climate (e.g., the Little Ice Age and Medieval Warm Period) implying a dynamic link between Northern Hemisphere temperatures and IPWP hydrology. The inverse relationship between the EASM and IM suggests that migrations of the Intertropical Convergence Zone and associated changes in monsoon strength caused synoptic hydrologic shifts in the IPWP throughout most of the past two millennia.
Resumo:
Benthic oxygen and carbon isotopic results from a depth transect on Maud Rise, Antarctica, provide the first evidence for Warm Saline Deep Water (WSDW) in the Paleogene oceans. Distinct reversals occur in the oxygen isotopic gradient between the shallower Hole 689B (Eocene depth ~1400 m; present-day depth 2080 m) and the deeper Hole 690B (Eocene depth ~2250 m; present-day depth 2914 m). The isotopic reversals, well developed by at least 46 Ma (middle middle Eocene), existed for much of the remaining Paleogene. We do not consider these reversals to be artifacts of differential diagenesis between the two sites or to have resulted from other potentially complicating factors. This being so, the results show that deep waters at Hole 690B were significantly warmer than deep waters at the shallower Hole 689B. A progressive decrease and eventual reversal in benthic to planktonic delta18O gradients in Hole 690B, demonstrate that the deeper waters became warmer relative to Antarctic surface waters during the Eocene. The warmer deep waters of the Paleogene are inferred to have been produced at middle to low latitudes, probably in the Tethyan region which contained extensive shallow-water platforms, ideal sites for the formation of high salinity water through evaporative processes. The ocean during the Eocene, and perhaps the Paleocene, is inferred to have been two-layered, consisting of warm, saline deep waters formed at low latitudes and overlain by cooler waters formed at high latitudes. This thermospheric ocean, dominated by halothermal circulation we name Proteus. The Neogene and modern psychrospheric ocean Oceanus is dominated by thermohaline circulation of deep waters largely formed at high latitudes. An intermediate condition existed during the Oligocene, with a three-layered ocean that consisted of cold, dense deep waters formed in the Antarctic (Proto-AABW), overlain by warm, saline deep waters from low latitudes, and in turn overlain by cool waters formed in the polar regions. This we name Proto-oceanus which combined both halothermal and thermohaline processes. The sequence of high latitude, major, climatic change inferred from the oxygen isotopic records is as follows: generally cooler earlier Paleocene; warming during the late Paleocene; climax of Cenozoic warmth during the early Eocene and continuing into the early middle Eocene; cooling mainly in a series of steps during the remainder of the Paleogene. Superimposed upon this Paleogene pattern, the Paleocene/Eocene boundary is marked by a brief but distinct warming that involved deep to surface waters and a reduction in surface to deep carbon and oxygen isotopic gradients. This event coincided with major extinctions among the deep-sea benthic foraminifers as shown by Thomas (1990 doi:10.2973/odp.proc.sr.113.123.1990). Salinity has played a major role in deep ocean circulation, and thus paleotemperatures cannot be inferred directly from the oxygen isotopic composition of Paleogene benthic foraminifers without first accounting for the salinity effect.