941 resultados para ORR KINETICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soluble and stable fibrin monomer-fibrinogen complex (SF) is well known to be present in the circulating blood of healthy individuals and of patients with thrombotic diseases. However, its physiological role is not yet fully understood. To deepen our knowledge about this complex, a method for the quantitative analysis of interaction between soluble fibrin monomers and surface-immobilized fibrinogen has been established by means of resonant mirror (IAsys) and surface plasmon resonance (BIAcore) biosensors. The protocols have been optimized and validated by choosing appropriate immobilization procedures with regeneration steps and suitable fibrin concentrations. The highly specific binding of fibrin monomers to immobilized fibrin(ogen), or vice versa, was characterized by an affinity constant of approximately 10(-8)M, which accords better with the direct dissociation of fibrin triads (KD approximately 10(-8) -10(-9) M) (J. R. Shainoff and B. N. Dardik, Annals of the New York Academy of Science, 1983, Vol. 27, pp. 254-268) than with earlier estimations of the KD for the fibrin-fibrinogen complex (KD approximately 10(-6) M) (J. L. Usero, C. Izquierdo, F. J. Burguillo, M. G. Roig, A. del Arco, and M. A. Herraez, International Journal of Biochemistry, 1981, Vol. 13, pp. 1191-1196).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goals of the present study were to model the population kinetics of in vivo influx and efflux processes of grepafloxacin at the serum-cerebrospinal fluid (CSF) barrier and to propose a simulation-based approach to optimize the design of dose-finding trials in the meningitis rabbit model. Twenty-nine rabbits with pneumococcal meningitis receiving grepafloxacin at 15 mg/kg of body weight (intravenous administration at 0 h), 30 mg/kg (at 0 h), or 50 mg/kg twice (at 0 and 4 h) were studied. A three-compartment population pharmacokinetic model was fit to the data with the program NONMEM (Nonlinear Mixed Effects Modeling). Passive diffusion clearance (CL(diff)) and active efflux clearance (CL(active)) are transfer kinetic modeling parameters. Influx clearance is assumed to be equal to CL(diff), and efflux clearance is the sum of CL(diff), CL(active), and bulk flow clearance (CL(bulk)). The average influx clearance for the population was 0.0055 ml/min (interindividual variability, 17%). Passive diffusion clearance was greater in rabbits receiving grepafloxacin at 15 mg/kg than in those treated with higher doses (0.0088 versus 0.0034 ml/min). Assuming a CL(bulk) of 0.01 ml/min, CL(active) was estimated to be 0.017 ml/min (11%), and clearance by total efflux was estimated to be 0.032 ml/min. The population kinetic model allows not only to quantify in vivo efflux and influx mechanisms at the serum-CSF barrier but also to analyze the effects of different dose regimens on transfer kinetic parameters in the rabbit meningitis model. The modeling-based approach also provides a tool for the simulation and prediction of various outcomes in which researchers might be interested, which is of great potential in designing dose-finding trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In my Ph.D research, a wet chemistry-based organic solution phase reduction method was developed, and was successfully applied in the preparation of a series of advanced electro-catalysts, including 0-dimensional (0-D) Pt, Pd, Au, and Pd-Ni nanoparticles (NPs), 1-D Pt-Fe nanowires (NWs) and 2-D Pd-Fe nanoleaves (NLs), with controlled size, shape, and morphology. These nanostructured catalysts have demonstrated unique electro-catalytic functions towards electricity production and biorenewable alcohol conversion. The molecular oxygen reduction reaction (ORR) is a long-standing scientific issue for fuel cells due to its sluggish kinetics and the poor catalyst durability. The activity and durability of an electro-catalyst is strongly related with its composition and structure. Based on this point, Pt-Fe NWs with a diameter of 2 - 3 nm were accurately prepared. They have demonstrated a high durability in sulfuric acid due to its 1-D structure, as well as a high ORR activity attributed to its tuned electronic structure. By substituting Pt with Pd using a similar synthesis route, Pd-Fe NLs were prepared and demonstrated a higher ORR activity than Pt and Pd NPs catalysts in the alkaline electrolyte. Recently, biomass-derived alcohols have attracted enormous attention as promising fuels (to replace H2) for low-temperature fuel cells. From this point of view, Pd-Ni NPs were prepared and demonstrated a high electro-catalytic activity towards ethanol oxidation. Comparing to ethanol, the biodiesel waste glycerol is more promising due to its low price and high reactivity. Glycerol (and crude glycerol) was successfully applied as the fuel in an Au-anode anion-exchange membrane fuel cell (AEMFC). By replacing Au with a more active Pt catalyst, simultaneous generation of both high power-density electricity and value-added chemicals (glycerate, tartronate, and mesoxalate) from glycerol was achieved in an AEMFC. To investigate the production of valuable chemicals from glycerol electro-oxidation, two anion-exchange membrane electro-catalytic reactors were designed. The research shows that the electro-oxidation product distribution is strongly dependent on the anode applied potential. Reaction pathways for the electro-oxidation of glycerol on Au/C catalyst have been elucidated: continuous oxidation of OH groups (to produce tartronate and mesoxalate) is predominant at lower potentials, while C-C cleavage (to produce glycolate) is the dominant reaction path at higher potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Growth/Differentiation Factors (GDFs) are a subgroup of the Bone Morphogenetic Proteins (BMPs) well known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling molecules, GDF-5, have recently been shown to exhibit a decreased rate of endochondral bone growth in the proximal tibia due to a significantly longer hypertrophic phase duration. GDF-7 is a related family member, which exhibits a high degree of sequence identity with GDF-5. The purpose of the present study was to determine whether GDF-7 deficiency also alters the endochondral bone growth rate in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-7 -/- mice and wild type control littermates were examined. GDF-7 deficiency resulted in a statistically significant increase in growth rate (+26%; p = 0.0084) and rate of cell loss at the chondrosseous junction (+25%; p = 0.0217). Cells from GDF-7 deficient mice also exhibited a significantly shorter hypertrophic phase duration compared to wild type controls (-27%; p = 0.0326). These data demonstrate that, in the absence of GDF-7, the rate of endochondral bone growth is affected through the modulation of hypertrophic phase duration in growth plate chondrocytes. These findings further support a growing body of evidence implicating the GDFs in the formation, maturation, and maintenance of healthy cartilage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although low-density lipoprotein (LDL) cholesterol is often normal in patients with type 2 diabetes mellitus, there is evidence for a reduced fractional catabolic rate and consequently an increased mean residence time (MRT), which can increase atherogenic risk. The dyslipidemia and insulin resistance of type 2 diabetes mellitus can be improved by aerobic exercise, but effects on LDL kinetics are unknown. The effect of 6-month supervised exercise on LDL apolipoprotein B kinetics was studied in a group of 17 patients with type 2 diabetes mellitus (mean age, 56.8 years; range, 38-68 years). Patients were randomized into a supervised group, who had a weekly training session, and an unsupervised group. LDL kinetics were measured with an infusion of 1-(13)C leucine at baseline in all groups and after 6 months of exercise in the patients. Eight body mass index-matched nondiabetic controls (mean age, 50.3 years; range, 40-67 years) were also studied at baseline only. At baseline, LDL MRT was significantly longer in the diabetic patients, whereas LDL production rate and fractional clearance rates were significantly lower than in controls. Percentage of glycated hemoglobin A(1c), body mass index, insulin sensitivity measured by the homeostasis model assessment, and very low-density lipoprotein triglyceride decreased (P < .02) in the supervised group, with no change in the unsupervised group. After 6 months, LDL cholesterol did not change in either the supervised or unsupervised group; but there was a significant change in LDL MRT between groups (P < .05) that correlated positively with very low-density lipoprotein triglyceride (r = 0.51, P < .04) and negatively with maximal oxygen uptake, a measure of fitness (r = -0.51, P = .035), in all patients. The LDL production and clearance rates did not change in either group. This study suggests that a supervised exercise program can reduce deleterious changes in LDL MRT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in high temperature electrochemical devices have prompted research into potential materials for component fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth/differentiation factors (GDFs) are a subgroup of the bone morphogenetic proteins best known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling proteins, GDF-5, exhibit numerous skeletal abnormalities, including shortened limb bones. The primary aim of this study was determine whether GDF-5 deficiency would alter the growth rate in growth plates from the long bones in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-5 -/- mice and control littermates were examined. GDF-5 deficiency resulted in a statistically significant reduction in growth rate (-14%, p=0.03). The effect of genotype on growth rate was associated with an altered hypertrophic phase duration, with hypertrophic cells from GDF-5 deficient mice exhibiting a significantly longer phase duration compared to control littermates (+25%, p=0.006). These data suggest that one way in which GDF-5 might modulate the rate of endochondral bone growth could be by affecting the duration of the hypertrophic phase in growth plate chondrocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feline leukaemia virus (FeLV) infection in felids results mainly from oronasal exposure to infectious saliva and nasal secretions, but the potential for viral transmission through faeces and urine has not been completely characterized. In order to assess and compare potential FeLV transmission routes, we determined the viral kinetics in plasma, saliva, faeces and urine during early experimental FeLV infection (up to week 15 post-exposure) in specific pathogen-free cats. In addition to monitoring p27 antigen levels measured by ELISA, we evaluated the presence of infectious particles by cell culture assays and quantified viral RNA loads by a quantitative real-time TaqMan polymerase chain reaction. RNA load was associated with infection outcome (high load-progressive infection; low load-regressive infection) not only in plasma, but also in saliva, faeces and urine. Infectious virus was isolated from the saliva, faeces and urine of infected cats with progressive infection as early as 3-6 weeks post-infection, but usually not in cats with regressive infection. In cats with progressive infection, therefore, not only saliva but also faeces and to some extent urine might represent potential FeLV transmission routes. These results should be taken into account when modelling FeLV-host interactions and assessing FeLV transmission risk. Moreover, during early FeLV infection, detection of viral RNA in saliva may be used as an indicator of recent virus exposure, even in cats without detectable antigenaemia/viraemia. To determine the clinically relevant outcome of FeLV infection in exposed cats, however, p27 antigen levels in the peripheral blood should be measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GH replacement therapy has been shown to improve the dyslipidemic condition in a substantial proportion of patients with adult GH deficiency. The mechanisms are not yet fully elucidated. Low-density lipoprotein (LDL) apolipoprotein B100 (apoB) formation and catabolism are important determinants of plasma cholesterol concentrations. This study examined the effect of GH replacement therapy on LDL apoB metabolism using a stable isotope turnover technique. LDL apoB kinetics was determined in 13 adult patients with GH deficiency before and after 3 months GH/placebo treatment in a randomized, double-blind, placebo-controlled study. LDL apoB (13)C-leucine enrichment was determined by isotope-ratio mass spectrometry. Plasma volume was assessed by standardized radionuclide dilution technique. GH replacement therapy significantly decreased LDL cholesterol, LDL apoB concentrations, and LDL apoB pool size compared with placebo. Compared with baseline, GH replacement therapy resulted in a significant increase in plasma volume and fractional catabolic rate, whereas LDL formation rate remained unchanged. LDL lipid content did not significantly change after GH and placebo. This study suggests that short-term GH replacement therapy decreases the LDL apoB pool by increasing removal of LDL particles without changing LDL composition or LDL apoB production rate. In addition, it is possible that the beneficial effects of GH on the cardiovascular system contribute to these findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with adult GH deficiency are often dyslipidemic and may have an increased risk of cardiovascular disease. The secretion and clearance of very low density lipoprotein apolipoprotein B 100 (VLDL apoB) are important determinants of plasma lipid concentrations. This study examined the effect of GH replacement therapy on VLDL apoB metabolism using a stable isotope turnover technique. VLDL apoB kinetics were determined in 14 adult patients with GH deficiency before and after 3 months GH or placebo treatment in a randomized double blind, placebo-controlled study using a primed constant [1-(13)C]leucine infusion. VLDL apoB enrichment was determined by gas chromatography-mass spectrometry. GH replacement therapy increased plasma insulin-like growth factor I concentrations 2.9 +/- 0.5-fold (P < 0.001), fasting insulin concentrations 1.8 +/- 0.6-fold (P < 0.04), and hemoglobin A1C from 5.0 +/- 0.2% to 5.3 +/- 0.2% (mean +/- SEM; P < 0.001). It decreased fat mass by 3.4 +/- 1.3 kg (P < 0.05) and increased lean body mass by 3.5 +/- 0.8 kg (P < 0.01). The total cholesterol concentration (P < 0.02), the low density lipoprotein cholesterol concentration (P < 0.02), and the VLDL cholesterol/VLDL apoB ratio (P < 0.005) decreased. GH therapy did not significantly change the VLDL apoB pool size, but increased the VLDL apoB secretion rate from 9.2 +/- 2.0 to 25.9 +/- 10.3 mg/kg x day (P < 0.01) and the MCR from 11.5 +/- 2.7 to 20.3 +/- 3.2 mL/min (P < 0.03). No significant changes were observed in the placebo group. This study suggests that GH replacement therapy improves lipid profile by increasing the removal of VLDL apoB. Although GH therapy stimulates VLDL apoB secretion, this is offset by the increase in the VLDL apoB clearance rate, which we postulate is due to its effects in up-regulating low density lipoprotein receptors and modifying VLDL composition.