960 resultados para Numerical weather forecasting.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method to weakly correct the solutions of stochastically driven nonlinear dynamical systems, herein numerically approximated through the Eule-Maruyama (EM) time-marching map, is proposed. An essential feature of the method is a change of measures that aims at rendering the EM-approximated solution measurable with respect to the filtration generated by an appropriately defined error process. Using Ito's formula and adopting a Monte Carlo (MC) setup, it is shown that the correction term may be additively applied to the realizations of the numerically integrated trajectories. Numerical evidence, presently gathered via applications of the proposed method to a few nonlinear mechanical oscillators and a semi-discrete form of a 1-D Burger's equation, lends credence to the remarkably improved numerical accuracy of the corrected solutions even with relatively large time step sizes. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports numerical investigation concerning the interaction of a laminar methane-air counterflow diffusion flame with monodisperse and polydisperse water spray. Commercial code ANSYS FLUENT with reduced chemistry has been used for investigation. Effects of strain rate, Sauter mean diameter (SMD), and droplet size distribution on the temperature along stagnation streamline have been studied. Flame extinction using polydisperse water spray has also been explored. Comparison of monodisperse and polydisperse droplet distribution on flame properties reveals suitability of polydisperse spray in flame temperature reduction beyond a particular SMD. This study also provides a numerical framework to study flame-spray interaction and extinction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple geometries which are possible alternatives for the Orbitrap are studied in this paper. We have taken up for numerical investigation two segmented-electrode structures, ORB1 and ORB2, to mimic the electric field of the Orbitrap. In the ORB1, the inner spindle-like electrode and the outer barrel-like electrode of the Orbitrap have been replaced by 35 rings and 35 discs of fixed radii, respectively. In this structure two segmented end cap electrodes have been added. In this geometry, different potentials are applied to the different electrodes keeping top-bottom symmetry intact. In the second geometry, ORB2, the inner and outer electrodes of the Orbitrap were replaced by an approximate step structure which follows the profile of the Orbitrap electrodes. In the present study 45 steps have been used. In the ORB2, like the Orbitrap, the inner electrode is held at a negative potential and the outer electrode is at ground potential. For the purpose of comparing the performance of ORB1 and ORB2 with that of the Orbitrap, the following studies have been undertaken: (1) variation of electric potential, (2) computation of ion trajectories, (3) simulation of image currents. These studies have been carried out using both 2D and 3D Boundary Element Method (BEM), the 3D BEM was developed specifically for this study. It has been seen in these investigations that ORB1 and ORB2 have performance similar to that of the Orbitrap, with the performance of the ORB1 being seen to be marginally superior to that of the ORB2. It has been shown that with proper optimization, geometries containing far fewer electrodes can be used as mass analyzers. A novel technique of optimization of the electric field has been proposed with the objective of minimizing the dependence of axial frequency of ion motion on the initial position of an ion. The results on the optimization of 9 and 15 segmented-electrode traps having the same design as ORB1 show that it can provide accurate mass analysis. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a theoretical analysis of heat and mass transfer in a silica gel + water adsorption process using scaling principles. A two-dimensional columnar packed adsorber domain is chosen for the study, with side and bottom walls cooled and vapour inlet from the top. The adsorption process is initiated from the cold walls with a temperature jump of 15 K, whereas the water vapour supply is maintained at a constant inlet pressure of 1 kPa. The first part of the study is dedicated to deriving relevant scales for the adsorption process by an order of magnitude analysis of energy, continuity and momentum equations. In the latter part, the derived scales are compared with the outcome of numerical studies performed for various domain widths and aspect ratio of bed. A good correlation between scaling and simulation results is observed, thereby validating the scaling approach. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple geometries which are possible alternatives for the Orbitrap are studied in this paper. We have taken up for numerical investigation two segmented-electrode structures, ORB1 and ORB2, to mimic the electric field of the Orbitrap. In the ORB1, the inner spindle-like electrode and the outer barrel-like electrode of the Orbitrap have been replaced by 35 rings and 35 discs of fixed radii, respectively. In this structure two segmented end cap electrodes have been added. In this geometry, different potentials are applied to the different electrodes keeping top-bottom symmetry intact. In the second geometry, ORB2, the inner and outer electrodes of the Orbitrap were replaced by an approximate step structure which follows the profile of the Orbitrap electrodes. In the present study 45 steps have been used. In the ORB2, like the Orbitrap, the inner electrode is held at a negative potential and the outer electrode is at ground potential. For the purpose of comparing the performance of ORB1 and ORB2 with that of the Orbitrap, the following studies have been undertaken: (1) variation of electric potential, (2) computation of ion trajectories, (3) simulation of image currents. These studies have been carried out using both 2D and 3D Boundary Element Method (BEM), the 3D BEM was developed specifically for this study. It has been seen in these investigations that ORB1 and ORB2 have performance similar to that of the Orbitrap, with the performance of the ORB1 being seen to be marginally superior to that of the ORB2. It has been shown that with proper optimization, geometries containing far fewer electrodes can be used as mass analyzers. A novel technique of optimization of the electric field has been proposed with the objective of minimizing the dependence of axial frequency of ion motion on the initial position of an ion. The results on the optimization of 9 and 15 segmented-electrode traps having the same design as ORB1 show that it can provide accurate mass analysis. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to quantify leakage flow and windage heating for labyrinth seals with honeycomb lands is critical in understanding gas turbine engine system performance and predicting its component life. Variety of labyrinth seal configurations (number of teeth, stepped or straight, honeycomb cell size) are in use in gas turbines, and for each configuration, there are many geometric factors that can impact a seal's leakage and windage characteristics. This paper describes the development of a numerical methodology aimed at studying the effect of honeycomb lands on leakage and windage heating. Specifically, a three-dimensional computational fluid dynamics (CFD) model is developed utilizing commercial finite volume-based software incorporating the renormalization group (RNG) k-epsilon turbulence model with modified Schmidt number. The modified turbulence model is benchmarked and fine-tuned based on several experiments. Using this model, a broad parametric study is conducted by varying honeycomb cell size, pressure ratio (PR), and radial clearance for a four-tooth straight-through labyrinth seal. The results show good agreement with available experimental data. They further indicate that larger honeycomb cells predict higher seal leakage and windage heating at tighter clearances compared to smaller honeycomb cells and smooth lands. However, at open seal clearances larger honeycomb cells have lower leakage compared to smaller honeycomb cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulation of separated flows in rocket nozzles is challenging because existing turbulence models are unable to predict it correctly. This paper addresses this issue with the Spalart-Allmaras and Shear Stress Transport (SST) eddy-viscosity models, which predict flow separation with moderate success. Their performances have been compared against experimental data for a conical and two contoured subscale nozzles. It is found that they fail to predict the separation location correctly, exhibiting sensitivity to the nozzle pressure ratio (NPR) and nozzle type. A careful assessment indicated how the model had to be tuned for better, consistent prediction. It is learnt that SST model's failure is caused by limiting of the shear stress inside boundary layer according to Bradshaw's assumption, and by over prediction of jet spreading rate. Accordingly, SST's coefficients were empirically modified to match the experimental wall pressure data. Results confirm that accurate RANS prediction of separation depends on the correct capture of the jet spreading rate, and that it is feasible over a wide range of NPRs by modified values of the diffusion coefficients in the turbulence model. (C) 2015 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present a numerical study of flow of shear thinning viscoelastic fluids in rectangular lid driven cavities for a wide range of aspect ratios (depth to width ratio) varying from 1/16 to 4. In particular, the effect of elasticity, inertia, model parameters and polymer concentration on flow features in rectangular driven cavity has been studied for two shear thinning viscoelastic fluids, namely, Giesekus and linear PTT. We perform numerical simulations using the symmetric square root representation of the conformation tensor to stabilize the numerical scheme against the high Weissenberg number problem. The variation in flow structures associated with merging and splitting of elongated vortices in shallow cavities and coalescence of corner eddies to yield a second primary vortex in deep cavities with respect to the variation in flow parameters is discussed. We discuss the effect of the dominant eigenvalues and the corresponding eigenvectors on the location of the primary eddy in the cavity. We also demonstrate, by performing numerical simulations for shallow and deep cavities, that where the Deborah number (based on convective time scale) characterizes the elastic behaviour of the fluid in deep cavities, Weissenberg number (based on shear rate) should be used for shallow cavities. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamical behaviors and frequency characteristics of an active mode-locked laser with a quarter wave plate (QWP) are numerically studied by using a set pf vectorial laser equation. Like a polarization self-modulated laser, a frequency shift of half the cavity mode spacing exists between the eigen-modes in the two neutral axes of QWP. Within the active medium, the symmetric gain and cavity structure maintain the pulse's circular polarization with left-hand and right-hand in turn for each round trip. Once the left-hand or right-hand circularly polarized pulse passes through QWP, its polarization is linear and the polarized direction is in one of the directions of i45o with respect to the neutral axes of QWP. The output components in the directions of i45" from the mirror close to QWP are all linearly polarized with a period of twice the round-trip time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a numerical method with high order accuracy and high resolution was developed to simulate the Richtmyer-Meshkov(RM) instability driven by cylindrical shock waves. Compressible Euler equations in cylindrical coordinate were adopted for the cylindrical geometry and a third order accurate group control scheme was adopted to discretize the equations. Moreover, an adaptive grid technique was developed to refine the grid near the moving interface to improve the resolution of numerical solutions. The results of simulation exhibited the evolution process of RM instability, and the effect of Atwood number was studied. The larger the absolute value of Atwood number, the larger the perturbation amplitude. The nonlinear effect manifests more evidently in cylindrical geometry. The shock reflected from the pole center accelerates the interface for the second time, considerably complicating the interface evolution process, and such phenomena of reshock and secondary shock were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct numerical simulation is carried out for a spatially evolving supersonic turbulent boundary layer at free-stream Mach number 6. To overcome numerical instability, the seventh-order WENO scheme is used for the convection terms of Navier-Stokes equations, and fine mesh is adopted to minimize numerical dissipation. Compressibilty effects on the near-wall turbulent kinetic energy budget are studied. The cross-stream extended self-similarity and scaling exponents including the near-wall region are studied. In high Mach number flows, the coherence vortex structures are arranged to be smoother and streamwised, and the hair-pin vortices are less likely to occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micromachined accelerometer is a kind of inertial MEMS devices, which usually operate under intensive impact loading. The reliability of micromachined accelerometers is one of the most important performance indices for their design, manufacture and commer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the finite volume method, a 2D numerical model for seepage in unsaturated soil has been established to study the rainfall infiltration in the fractured slope.The result shows that more rain may infiltrate into the slope due to existing fracture and then the pore pressure rises correspondingly. Very probably, it is one of the crucial factors accounting for slope failure. Furthermore a preliminary study has been conducted to investigate the influence of various fracture and rainfall factors such as the depth, width and location of a crack, surface condition, rainfall intensity and duration. Pore pressure and water volumetric content during the transient seepage are carefully examined to reveal the intrinsic mechanism.