920 resultados para Numerical linear algebra, weighted geometric matrix mean, Krylov subspace methods, numerical quadrature
Resumo:
Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on the norm of mean curvature and area. We show that on passing to a subsequence, we can choose parametrisations of the surfaces by inclusion maps from a fixed surface of the same genus so that the distance functions corresponding to the pullback metrics converge to a pseudo-metric and the inclusion maps converge to a Lipschitz map. We show further that the limiting pseudo-metric has fractal dimension two. As a corollary, we obtain a purely geometric result. Namely, we show that bounds on the mean curvature, area and genus of a surface F subset of M, together with bounds on the geometry of M, give an upper bound on the diameter of F. Our proof is modelled on Gromov's compactness theorem for J-holomorphic curves.
Resumo:
A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.
Resumo:
The paper deals with the existence of a quadratic Lyapunov function V = x′P(t)x for an exponentially stable linear system with varying coefficients described by the vector differential equation S0305004100044777_inline1 The derivative dV/dt is allowed to be strictly semi-(F) and the locus dV/dt = 0 does not contain any arc of the system trajectory. It is then shown that the coefficient matrix A(t) of the exponentially stable sy
Resumo:
The effect of fluid velocity fluctuations on the dynamics of the particles in a turbulent gas–solid suspension is analysed in the low-Reynolds-number and high Stokes number limits, where the particle relaxation time is long compared with the correlation time for the fluid velocity fluctuations, and the drag force on the particles due to the fluid can be expressed by the modified Stokes law. The direct numerical simulation procedure is used for solving the Navier–Stokes equations for the fluid, the particles are modelled as hard spheres which undergo elastic collisions and a one-way coupling algorithm is used where the force exerted by the fluid on the particles is incorporated, but not the reverse force exerted by the particles on the fluid. The particle mean and root-mean-square (RMS) fluctuating velocities, as well as the probability distribution function for the particle velocity fluctuations and the distribution of acceleration of the particles in the central region of the Couette (where the velocity profile is linear and the RMS velocities are nearly constant), are examined. It is found that the distribution of particle velocities is very different from a Gaussian, especially in the spanwise and wall-normal directions. However, the distribution of the acceleration fluctuation on the particles is found to be close to a Gaussian, though the distribution is highly anisotropic and there is a correlation between the fluctuations in the flow and gradient directions. The non-Gaussian nature of the particle velocity fluctuations is found to be due to inter-particle collisions induced by the large particle velocity fluctuations in the flow direction. It is also found that the acceleration distribution on the particles is in very good agreement with the distribution that is calculated from the velocity fluctuations in the fluid, using the Stokes drag law, indicating that there is very little correlation between the fluid velocity fluctuations and the particle velocity fluctuations in the presence of one-way coupling. All of these results indicate that the effect of the turbulent fluid velocity fluctuations can be accurately represented by an anisotropic Gaussian white noise.
Resumo:
We report an experimental study of a new type of turbulent flow that is driven purely by buoyancy. The flow is due to an unstable density difference, created using brine and water, across the ends of a long (length/diameter=9) vertical pipe. The Schmidt number Sc is 670, and the Rayleigh number (Ra) based on the density gradient and diameter is about 108. Under these conditions the convection is turbulent, and the time-averaged velocity at any point is ‘zero’. The Reynolds number based on the Taylor microscale, Reλ, is about 65. The pipe is long enough for there to be an axially homogeneous region, with a linear density gradient, about 6–7 diameters long in the midlength of the pipe. In the absence of a mean flow and, therefore, mean shear, turbulence is sustained just by buoyancy. The flow can be thus considered to be an axially homogeneous turbulent natural convection driven by a constant (unstable) density gradient. We characterize the flow using flow visualization and particle image velocimetry (PIV). Measurements show that the mean velocities and the Reynolds shear stresses are zero across the cross-section; the root mean squared (r.m.s.) of the vertical velocity is larger than those of the lateral velocities (by about one and half times at the pipe axis). We identify some features of the turbulent flow using velocity correlation maps and the probability density functions of velocities and velocity differences. The flow away from the wall, affected mainly by buoyancy, consists of vertically moving fluid masses continually colliding and interacting, while the flow near the wall appears similar to that in wall-bound shear-free turbulence. The turbulence is anisotropic, with the anisotropy increasing to large values as the wall is approached. A mixing length model with the diameter of the pipe as the length scale predicts well the scalings for velocity fluctuations and the flux. This model implies that the Nusselt number would scale as Ra1/2Sc1/2, and the Reynolds number would scale as Ra1/2Sc−1/2. The velocity and the flux measurements appear to be consistent with the Ra1/2 scaling, although it must be pointed out that the Rayleigh number range was less than 10. The Schmidt number was not varied to check the Sc scaling. The fluxes and the Reynolds numbers obtained in the present configuration are much higher compared to what would be obtained in Rayleigh–Bénard (R–B) convection for similar density differences.
Resumo:
The tendency of granular materials in rapid shear ow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear flow of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.
Resumo:
We have analysed the diurnal cycle of rainfall over the Indian region (10S-35N, 60E-100E) using both satellite and in-situ data, and found many interesting features associated with this fundamental, yet under-explored, mode of variability. Since there is a distinct and strong diurnal mode of variability associated with the Indian summer monsoon rainfall, we evaluate the ability of the Weather Research and Forecasting Model (WRF) to simulate the observed diurnal rainfall characteristics. The model (at 54km grid-spacing) is integrated for the month of July, 2006, since this period was particularly favourable for the study of diurnal cycle. We first evaluate the sensitivity of the model to the prescribed sea surface temperature (SST), by using two different SST datasets, namely, Final Analyses (FNL) and Real-time Global (RTG). It was found that with RTG SST the rainfall simulation over central India (CI) was significantly better than that with FNL. On the other hand, over the Bay of Bengal (BoB), rainfall simulated with FNL was marginally better than with RTG. However, the overall performance of RTG SST was found to be better than FNL, and hence it was used for further model simulations. Next, we investigated the role of the convective parameterization scheme on the simulation of diurnal cycle of rainfall. We found that the Kain-Fritsch (KF) scheme performs significantly better than Betts-Miller-Janjić (BMJ) and Grell-Devenyi schemes. We also studied the impact of other physical parameterizations, namely, microphysics, boundary layer, land surface, and the radiation parameterization, on the simulation of diurnal cycle of rainfall, and identified the “best” model configuration. We used this configuration of the “best” model to perform a sensitivity study on the role of various convective components used in the KF scheme. In particular, we studied the role of convective downdrafts, convective timescale, and feedback fraction, on the simulated diurnal cycle of rainfall. The “best” model simulations, in general, show a good agreement with observations. Specifically, (i) Over CI, the simulated diurnal rainfall peak is at 1430 IST, in comparison to the observed 1430-1730 IST peak; (ii) Over Western Ghats and Burmese mountains, the model simulates a diurnal rainfall peak at 1430 IST, as opposed to the observed peak of 1430-1730 IST; (iii) Over Sumatra, both model and observations show a diurnal peak at 1730 IST; (iv) The observed southward propagating diurnal rainfall bands over BoB are weakly simulated by WRF. Besides the diurnal cycle of rainfall, the mean spatial pattern of total rainfall and its partitioning between the convective and stratiform components, are also well simulated. The “best” model configuration was used to conduct two nested simulations with one-way, three-level nesting (54-18-6km) over CI and BoB. While, the 54km and 18km simulations were conducted for the whole of July, 2006, the 6km simulation was carried out for the period 18 - 24 July, 2006. The results of our coarse- and fine-scale numerical simulations of the diurnal cycle of monsoon rainfall will be discussed.
Resumo:
MATLAB is an array language, initially popular for rapid prototyping, but is now being increasingly used to develop production code for numerical and scientific applications. Typical MATLAB programs have abundant data parallelism. These programs also have control flow dominated scalar regions that have an impact on the program's execution time. Today's computer systems have tremendous computing power in the form of traditional CPU cores and throughput oriented accelerators such as graphics processing units(GPUs). Thus, an approach that maps the control flow dominated regions to the CPU and the data parallel regions to the GPU can significantly improve program performance. In this paper, we present the design and implementation of MEGHA, a compiler that automatically compiles MATLAB programs to enable synergistic execution on heterogeneous processors. Our solution is fully automated and does not require programmer input for identifying data parallel regions. We propose a set of compiler optimizations tailored for MATLAB. Our compiler identifies data parallel regions of the program and composes them into kernels. The problem of combining statements into kernels is formulated as a constrained graph clustering problem. Heuristics are presented to map identified kernels to either the CPU or GPU so that kernel execution on the CPU and the GPU happens synergistically and the amount of data transfer needed is minimized. In order to ensure required data movement for dependencies across basic blocks, we propose a data flow analysis and edge splitting strategy. Thus our compiler automatically handles composition of kernels, mapping of kernels to CPU and GPU, scheduling and insertion of required data transfer. The proposed compiler was implemented and experimental evaluation using a set of MATLAB benchmarks shows that our approach achieves a geometric mean speedup of 19.8X for data parallel benchmarks over native execution of MATLAB.
Resumo:
This paper is concerned with the dynamic analysis of flexible,non-linear multi-body beam systems. The focus is on problems where the strains within each elastic body (beam) remain small. Based on geometrically non-linear elasticity theory, the non-linear 3-D beam problem splits into either a linear or non-linear 2-D analysis of the beam cross-section and a non-linear 1-D analysis along the beam reference line. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction,results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis,the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here.The analysis methodology can be viewed as a 3-step procedure. First, the sectional properties of beams made of composite materials are determined either based on an asymptotic procedure that involves a 2-D finite element nonlinear analysis of the beam cross-section to capture trapeze effect or using strip-like beam analysis, starting from Classical Laminated Shell Theory (CLST). Second, the dynamic response of non-linear, flexible multi-body beam systems is simulated within the framework of energy-preserving and energy-decaying time integration schemes that provide unconditional stability for non-linear beam systems. Finally,local 3-D responses in the beams are recovered, based on the 1-D responses predicted in the second step. Numerical examples are presented and results from this analysis are compared with those available in the literature.
Resumo:
This work intends to demonstrate the importance of geometrically nonlinear crosssectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the four beam reference curves. For thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses, more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the nonlinear, flexible fourbar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we shall attempt to identify and investigate a few problems where the cross-sectional nonlinearities are significant. This will be carried out by varying stacking sequences and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form nonlinear beam stiffness matrix. Numerical examples will be presented and results from this analysis will be compared with those available in the literature, for linear cross-sectional analysis and isotropic materials as special cases.
Resumo:
Linear stability and the nonmodal transient energy growth in compressible plane Couette flow are investigated for two prototype mean flows: (a) the uniform shear flow with constant viscosity, and (b) the nonuniform shear flow with stratified viscosity. Both mean flows are linearly unstable for a range of supersonic Mach numbers (M). For a given M, the critical Reynolds number (Re) is significantly smaller for the uniform shear flow than its nonuniform shear counterpart; for a given Re, the dominant instability (over all streamwise wave numbers, α) of each mean flow belongs to different modes for a range of supersonic M. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean flow to perturbations. It is shown that the energy transfer from mean flow occurs close to the moving top wall for “mode I” instability, whereas it occurs in the bulk of the flow domain for “mode II.” For the nonmodal transient growth analysis, it is shown that the maximum temporal amplification of perturbation energy, Gmax, and the corresponding time scale are significantly larger for the uniform shear case compared to those for its nonuniform counterpart. For α=0, the linear stability operator can be partitioned into L∼L̅ +Re2 Lp, and the Re-dependent operator Lp is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t∕Re)∼Re2. In contrast, the dominance of Lp is responsible for the invalidity of this scaling law in nonuniform shear flow. An inviscid reduced model, based on Ellingsen-Palm-type solution, has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and nonmodal instability, it is shown that the viscosity stratification of the underlying mean flow would lead to a delayed transition in compressible Couette flow.
Resumo:
Pricing is an effective tool to control congestion and achieve quality of service (QoS) provisioning for multiple differentiated levels of service. In this paper, we consider the problem of pricing for congestion control in the case of a network of nodes under a single service class and multiple queues, and present a multi-layered pricing scheme. We propose an algorithm for finding the optimal state dependent price levels for individual queues, at each node. The pricing policy used depends on a weighted average queue length at each node. This helps in reducing frequent price variations and is in the spirit of the random early detection (RED) mechanism used in TCP/IP networks. We observe in our numerical results a considerable improvement in performance using our scheme over that of a recently proposed related scheme in terms of both throughput and delay performance. In particular, our approach exhibits a throughput improvement in the range of 34 to 69 percent in all cases studied (over all routes) over the above scheme.
Resumo:
Abstract. Let G = (V,E) be a weighted undirected graph, with non-negative edge weights. We consider the problem of efficiently computing approximate distances between all pairs of vertices in G. While many efficient algorithms are known for this problem in unweighted graphs, not many results are known for this problem in weighted graphs. Zwick [14] showed that for any fixed ε> 0, stretch 1 1 + ε distances between all pairs of vertices in a weighted directed graph on n vertices can be computed in Õ(n ω) time, where ω < 2.376 is the exponent of matrix multiplication and n is the number of vertices. It is known that finding distances of stretch less than 2 between all pairs of vertices in G is at least as hard as Boolean matrix multiplication of two n×n matrices. It is also known that all-pairs stretch 3 distances can be computed in Õ(n 2) time and all-pairs stretch 7/3 distances can be computed in Õ(n 7/3) time. Here we consider efficient algorithms for the problem of computing all-pairs stretch (2+ε) distances in G, for any 0 < ε < 1. We show that all pairs stretch (2 + ε) distances for any fixed ε> 0 in G can be computed in expected time O(n 9/4 logn). This algorithm uses a fast rectangular matrix multiplication subroutine. We also present a combinatorial algorithm (that is, it does not use fast matrix multiplication) with expected running time O(n 9/4) for computing all-pairs stretch 5/2 distances in G. 1
Resumo:
In the present article we take up the study of nonlinear localization induced base isolation of a 3 degree of freedom system having cubic nonlinearities under sinusoidal base excitation. The damping forces in the system are described by functions of fractional derivative of the instantaneous displacements, typically linear and quadratic damping are considered here separately. Under the assumption of smallness of certain system parameters and nonlinear terms an approximate estimate of the response at each degree of freedom of the system is obtained by the Method of Multiple Scales approach. We then consider a similar system where the nonlinear terms and certain other parameters are no longer small. Direct numerical simulation is made use of to obtain the amplitude plot in the frequency domain for this case, which helps us to establish the efficacy of this method of base isolation for a broad class of systems. Base isolation obtained this way has no counterpart in the linear theory.
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS linear equalizer. We study how well this equalizer tracks the optimal Wiener equalizer. We model the channel by an Auto-regressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, the error between the LMS equalizer and the instantaneous Wiener filter is shown to decay exponentially/polynomially to zero unless the channel is marginally stable in which case the convergence may not hold.Using the same ODEs, we also show that the corresponding Mean Square Error (MSE) converges towards minimum MSE(MMSE) at the same rate for a stable channel. We further show that the difference between the MSE and the MMSE does not explode with time even when the channel is unstable. Finally we obtain an optimum step size for the linear equalizer in terms of the AR parameters, whenever the error decay is exponential.