950 resultados para Number projection
Resumo:
[1] Temperature and ozone observations from the Microwave Limb Sounder (MLS) on the EOS Aura satellite are used to study equatorial wave activity in the autumn of 2005. In contrast to previous observations for the same season in other years, the temperature anomalies in the middle and lower tropical stratosphere are found to be characterized by a strong wave-like eastward progression with zonal wave number equal to 3. Extended empirical orthogonal function (EOF) analysis reveals that the wave 3 components detected in the temperature anomalies correspond to a slow Kelvin wave with a period of 8 days and a phase speed of 19 m/s. Fluctuations associated with this Kelvin wave mode are also apparent in ozone profiles. Moreover, as expected by linear theory, the ozone fluctuations observed in the lower stratosphere are in phase with the temperature perturbations, and peak around 20–30 hPa where the mean ozone mixing ratios have the steepest vertical gradient. A search for other Kelvin wave modes has also been made using both the MLS observations and the analyses from one experiment where MLS ozone profiles are assimilated into the European Centre for Medium-Range Weather Forecasts (ECMWF) data assimilation system via a 6-hourly 3D var scheme. Our results show that the characteristics of the wave activity detected in the ECMWF temperature and ozone analyses are in good agreement with MLS data.
Resumo:
In all biological processes, protein molecules and other small molecules interact to function and form transient macromolecular complexes. This interaction of two or more molecules can be described by a docking event. Docking is an important phase for structure-based drug design strategies, as it can be used as a method to simulate protein-ligand interactions. Various docking programs exist that allow automated docking, but most of them have limited visualization and user interaction. It would be advantageous if scientists could visualize the molecules participating in the docking process, manipulate their structures and manually dock them before submitting the new conformations to an automated docking process in an immersive environment, which can help stimulate the design/docking process. This also could greatly reduce docking time and resources. To achieve this, we propose a new virtual modelling/docking program, whereby the advantages of virtual modelling programs and the efficiency of the algorithms in existing docking programs will be merged.
Condition number estimates for combined potential boundary integral operators in acoustic scattering
Resumo:
We study the classical combined field integral equation formulations for time-harmonic acoustic scattering by a sound soft bounded obstacle, namely the indirect formulation due to Brakhage-Werner/Leis/Panic, and the direct formulation associated with the names of Burton and Miller. We obtain lower and upper bounds on the condition numbers for these formulations, emphasising dependence on the frequency, the geometry of the scatterer, and the coupling parameter. Of independent interest we also obtain upper and lower bounds on the norms of two oscillatory integral operators, namely the classical acoustic single- and double-layer potential operators.
Resumo:
A combination of idealized numerical simulations and analytical theory is used to investigate the spacing between convective orographic rainbands over the Coastal Range of western Oregon. The simulations, which are idealized from an observed banded precipitation event over the Coastal Range, indicate that the atmospheric response to conditionally unstable flow over the mountain ridge depends strongly on the subridge-scale topographic forcing on the windward side of the ridge. When this small-scale terrain contains only a single scale (l) of terrain variability, the band spacing is identical to l, but when a spectrum of terrain scales are simultaneously present, the band spacing ranges between 5 and 10 km, a value that is consistent with observations. Based on the simulations, an inviscid linear model is developed to provide a physical basis for understanding the scale selection of the rainbands. This analytical model, which captures the transition from lee waves upstream of the orographic cloud to moist convection within it, reveals that the spacing of orographic rainbands depends on both the projection of lee-wave energy onto the unstable cap cloud and the growth rate of unstable perturbations within the cloud. The linear model is used in tandem with numerical simulations to determine the sensitivity of the band spacing to a number of environmental and terrain-related parameters.
Resumo:
A parallel hardware random number generator for use with a VLSI genetic algorithm processing device is proposed. The design uses an systolic array of mixed congruential random number generators. The generators are constantly reseeded with the outputs of the proceeding generators to avoid significant biasing of the randomness of the array which would result in longer times for the algorithm to converge to a solution. 1 Introduction In recent years there has been a growing interest in developing hardware genetic algorithm devices [1, 2, 3]. A genetic algorithm (GA) is a stochastic search and optimization technique which attempts to capture the power of natural selection by evolving a population of candidate solutions by a process of selection and reproduction [4]. In keeping with the evolutionary analogy, the solutions are called chromosomes with each chromosome containing a number of genes. Chromosomes are commonly simple binary strings, the bits being the genes.
Resumo:
None of the current surveillance streams monitoring the presence of scrapie in Great Britain provide a comprehensive and unbiased estimate of the prevalence of the disease at the holding level. Previous work to estimate the under-ascertainment adjusted prevalence of scrapie in Great Britain applied multiple-list capture–recapture methods. The enforcement of new control measures on scrapie-affected holdings in 2004 has stopped the overlapping between surveillance sources and, hence, the application of multiple-list capture–recapture models. Alternative methods, still under the capture–recapture methodology, relying on repeated entries in one single list have been suggested in these situations. In this article, we apply one-list capture–recapture approaches to data held on the Scrapie Notifications Database to estimate the undetected population of scrapie-affected holdings with clinical disease in Great Britain for the years 2002, 2003, and 2004. For doing so, we develop a new diagnostic tool for indication of heterogeneity as well as a new understanding of the Zelterman and Chao’s lower bound estimators to account for potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a special, locally truncated Poisson likelihood equivalent to a binomial likelihood. This understanding allows the extension of the Zelterman approach by means of logistic regression to include observed heterogeneity in the form of covariates—in case studied here, the holding size and country of origin. Our results confirm the presence of substantial unobserved heterogeneity supporting the application of our two estimators. The total scrapie-affected holding population in Great Britain is around 300 holdings per year. None of the covariates appear to inform the model significantly.
Resumo:
The effects of irrigation and nitrogen (N) fertilizer on Hagberg falling number (HFN), specific weight (SW) and blackpoint (BP) of winter wheat (Triticum aestivum L) were investigated. Mains water (+50 and +100 mm month(-1), containing 44 mg NO3- litre(-1) and 28 mg SO42- litre(-1)) was applied with trickle irrigation during winter (17 January-17 March), spring (21 March-20 May) or summer (24 May-23 July). In 1999/2000 these treatments were factorially combined with three N levels (0, 200, 400 kg N ha(-1)), applied to cv Hereward. In 2000/01 the 400 kg N ha(-1) treatment was replaced with cv Malacca given 200 kg N ha(-1). Irrigation increased grain yield, mostly by increasing grain numbers when applied in winter and spring, and by increasing mean grain weight when applied in summer. Nitrogen increased grain numbers and SW, and reduced BP in both years. Nitrogen increased HFN in 1999/2000 and reduced HFN in 2000/01. Effects of irrigation on HFN, SW and BP were smaller and inconsistent over year and nitrogen level. Irrigation interacted with N on mean grain weight: negatively for winter and spring irrigation, and positively for summer irrigation. Ten variables derived from digital image analysis of harvested grain were included with mean grain weight in a principal components analysis. The first principal component ('size') was negatively related to HFN (in two years) and BP (one year), and positively related to SW (two years). Treatment effects on dimensions of harvested grain could not explain all of the effects on HFN, BP and SW but the results were consistent with the hypothesis that water and nutrient availability, even when they were affected early in the season, could influence final grain quality if they influenced grain numbers and size. (C) 2004 Society of Chemical Industry
Resumo:
Field experiments were carried out to assess the effects of nitrogen fertilization and seed rate on the Hagberg falling number (HFN) of commercial wheat hybrids and their parents. Applying nitrogen (200 kg N ha(-1)) increased HFN in two successive years. The HFN of the hybrid Hyno Esta was lower than either of its parents (Estica and Audace), particularly when nitrogen was not applied. Treatment effects on HFN were negatively associated with a-amylase activity. Phadebas grain blotting suggested two populations of grains with different types of a-amylase activity: Estica appeared to have a high proportion of grains with low levels of late maturity endosperm a-amylase activity (LMEA); Audace had a few grains showing high levels of germination amylase; and the hybrid, Hyno Esta, combined the sources from both parents to show heterosis for a-amylase activity. Applying nitrogen reduced both apparent LMEA and germination amylase. The effects on LMEA were associated with the size and disruption of the grain cavity, which was greater in Hyno Esta and Estica and in zero-nitrogen treatments. External grain morphology failed to explain much of the variation in LMEA and cavity size, but there was a close negative correlation between cavity size and protein content. Applying nitrogen increased post-harvest dormancy of the grain. Dormancy was greatest in Estica and least in Audace. It is proposed that effects of seed rate, genotype and nitrogen fertilizer on HFN are mediated through factors affecting the size and disruption of the grain cavity and therefore LMEA, and through factors affecting dormancy and therefore germination amylase. (c) 2004 Society of Chemical Industry.
Resumo:
This paper reviews Bayesian procedures for phase 1 dose-escalation studies and compares different dose schedules and cohort sizes. The methodology described is motivated by the situation of phase 1 dose-escalation studiesin oncology, that is, a single dose administered to each patient, with a single binary response ("toxicity"' or "no toxicity") observed. It is likely that a wider range of applications of the methodology is possible. In this paper, results from 10000-fold simulation runs conducted using the software package Bayesian ADEPT are presented. Four designs were compared under six scenarios. The simulation results indicate that there are slight advantages of having more dose levels and smaller cohort sizes.
Resumo:
None of the current surveillance streams monitoring the presence of scrapie in Great Britain provide a comprehensive and unbiased estimate of the prevalence of the disease at the holding level. Previous work to estimate the under-ascertainment adjusted prevalence of scrapie in Great Britain applied multiple-list capture-recapture methods. The enforcement of new control measures on scrapie-affected holdings in 2004 has stopped the overlapping between surveillance sources and, hence, the application of multiple-list capture-recapture models. Alternative methods, still under the capture-recapture methodology, relying on repeated entries in one single list have been suggested in these situations. In this article, we apply one-list capture-recapture approaches to data held on the Scrapie Notifications Database to estimate the undetected population of scrapie-affected holdings with clinical disease in Great Britain for the years 2002, 2003, and 2004. For doing so, we develop a new diagnostic tool for indication of heterogeneity as well as a new understanding of the Zelterman and Chao's lower bound estimators to account for potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a special, locally truncated Poisson likelihood equivalent to a binomial likelihood. This understanding allows the extension of the Zelterman approach by means of logistic regression to include observed heterogeneity in the form of covariates-in case studied here, the holding size and country of origin. Our results confirm the presence of substantial unobserved heterogeneity supporting the application of our two estimators. The total scrapie-affected holding population in Great Britain is around 300 holdings per year. None of the covariates appear to inform the model significantly.
Resumo:
Background: Severe malarial anaemia is a major complication of malaria infection and is multifactorial resulting from loss of circulating red blood cells (RBCs) from parasite replication, as well as immune-mediated mechanisms. An understanding of the causes of severe malarial anaemia is necessary to develop and implement new therapeutic strategies to tackle this syndrome of malaria infection. Methods: Using analysis of variance, this work investigated whether parasite-destruction of RBCs always accounts for the severity of malarial anaemia during infections of the rodent malaria model Plasmodium chabaudi in mice of a BALB/c background. Differences in anaemia between two different clones of P. chabaudi were also examined. Results: Circulating parasite numbers were not correlated with the severity of anaemia in either BALB/c mice or under more severe conditions of anaemia in BALB/c RAG2 deficient mice (lacking T and B cells). Mice infected with P. chabaudi clone CB suffered more severe anaemia than mice infected with clone AS, but this was not correlated with the number of parasites in the circulation. Instead, the peak percentage of parasitized RBCs was higher in CB-infected animals than in AS-infected animals, and was correlated with the severity of anaemia, suggesting that the availability of uninfected RBCs was impaired in CB-infected animals. Conclusion: This work shows that parasite numbers are a more relevant measure of parasite levels in P. chabaudi infection than % parasitaemia, a measure that does not take anaemia into account. The lack of correlation between parasite numbers and the drop in circulating RBCs in this experimental model of malaria support a role for the host response in the impairment or destruction of uninfected RBC in P. chabaudi infections, and thus development of acute anaemia in this malaria model.