885 resultados para Nuclear magnetic resonance(NMR)
Resumo:
Phytochemical investigations of the stems of a specimen of Alibertia macrophylla led to the isolation and characterization of the new diterpene ent-kaurane-2β,3α,16α-triol (1), along with triterpenes 2-8, iridoids 9-12, and phenolic acids 13-15. The structure of 1 was established based on spectroscopic studies (1H- and 13C-NMR, IR, and HR-ESI-MS). This is the first report of the isolation of a diterpene from the Alibertia genus in Rubiaceae. © 2007 Verlag Helvetica Chimica Acta AG.
Compostos fenólicos e atividade antioxidante de Leiothrix flavescens (Bong.) Ruhland (Eriocaulaceae)
Resumo:
This paper describes a chemical investigation (by high-speed counter-current chromatography) of an extract in methanol of the capitula (flower-heads) of the endemic Brazilian herb Leiothrix flavescens (Bong.) Ruhland (Eriocaulaceae). Fractionation of this extract by preparative chromatography and identification of the isolated compounds by spectrometric methods (IR, UV, ESI-MS, NMR) led to the identification of flavones (apigenin, luteolin and 6-methoxyluteolin) and 1,3-di-O-feruloyl glycerol. The antioxidant activity of the extract was determined by DPPH reduction and the total phenolic content by the Folin-Ciocalteau assay. It was found that the methanolic extract of L. flavescens possesses strong antioxidant activity. Additionally, the chemical profile provided useful data for a discussion of the taxonomy of the Eriocaulaceae.
Resumo:
In this work we report the identification of two flavonol glycosides isolated from the leaves of Calotropis procera R. Br. (Asclepiadaceae), a plant species with large occurrence in Northwest of Brazil with some applications in folk medicine. Some proved pharmacological activities in this species could be attributed to the presence of flavonol glycosides. The extraction and isolation of flavonol glycosides was carried out firstly by a liquid-liquid partition, and then by elution of n-BuOH fraction with MeOH over a Sephadex LH-20 column. The identification of flavonol glycosides isorhamnetin-3-O-rutinoside (1), and isorhamnetin-3-O-robinobioside (2), was obtained by 1H and 13C NMR, one- and two-dimensional techniques.
Resumo:
Two new flavone glucosides, nitensosides A and B (1, 2), together with four known compounds, sorbifolin (3), sorbifolin 6-O-β-glucopyranoside (4), pedalitin (5), and pedalitin 6-O-β-glucopyranoside (6) were isolated from Pterogyne nitens. Their structures were elucidated from 1D and 2D NMR analysis, as well as by high resolution mass spectrometry. All the isolated flavones were evaluated for their myeloperoxidase (MPO) inhibitory activity. The most active compound, pedalitin, exhibited IC 50 value of 3.75 nM on MPO. Additionally, the radical-scavenging capacity of flavones 1-6 was evaluated towards ABTS and DPPH radicals and compared to standard compounds quercetin and Trolox®. © 2008 Pharmaceutical Society of Japan.
Resumo:
Schistosomiasis, an important disease in Brazil, is caused by a trematode of the genus Schistosoma, reaching millions of person in one of the most endemic region of this disease in the whole globe. The main goal of this work was to syntetize the 6-formyl- oxamniquine derivative and evaluate its biological activity. The 6-formyl-oxamniquine derivative was obtained by the oxidation of oxamniquine with MnO 2, applying CH 2Cl 2 as solvent at room temperature for 24 hours. The obtaintion of 6-formyl-oxamniquine derivative compound was confirmed by IR spectroscopy and 13C NMR and 1H NMR, presenting similar activity when compared to the commercial oxamniquine (Mansil®).
Resumo:
(Chemical Equation Presented) The reaction between the benzohydroxamate anion (BHO-) and bis(2,4-dinitrophenyl)phosphate (BDNPP) has been examined kinetically, and the products were characterized by mass and NMR spectroscopy. The nucleophilic attack of BHO- follows two reaction paths: (i) at phosphorus, giving an unstable intermediate that undergoes a Lossen rearrangement to phenyl isocyanate, aniline, diphenylurea, and O-phenylcarbamyl benzohydroxamate; and (ii) on the aromatic carbon, giving an intermediate that was detected but slowly decomposes to aniline and 2,4-dinitrophenol. Thus, the benzohydroxamate anion can be considered a self-destructive molecular scissor since it reacts and loses its nucleophilic ability. © 2009 American Chemical Society.
Resumo:
Two series of new chitosan derivatives were synthesized by reaction of deacetylated chitosan (CH) with propyl (CH-Propyl) and pentyl (CH-Pentyl) trimethylammonium bromides to obtain derivatives with increasing degrees of substitution (DS). The derivatives were characterized by 1H NMR and potentiometric titration techniques and their antifungal activities on the mycelial growth of Aspergillus flavus were investigated in vitro. The antifungal activities increase with DS and the more substituted derivatives of both series, CH-Propyl and CH-Pentyl, exhibited antifungal activities respectively three and six times higher than those obtained with commercial and deacetylated chitosan. The minimum inhibitory concentrations (MIC) were evaluated at 24, 48 and 72h by varying the polymer concentration from 0.5 to 16g/L and the results showed that the quaternary derivatives inhibited the fungus growth at polymer concentrations four times lower than that obtained with deacetylated chitosan (CH). The chitosans modified with pentyltrimethylammonium bromide exhibited higher activity and results are discussed taking into account the degree of substitution (DS). © 2012 Elsevier GmbH.
Resumo:
In this work, a silica surface chemically modified with [3-(2,2′-dipyridylamine)propyl] groups, named [3-(2,2′- dipyridylamine)propyl]silica (Si-Pr-DPA) was prepared, characterized, and evaluated for its heavy metal adsorption characteristics from aqueous solution. To our knowledge, we are the first authors who have reported the present modification. The material was characterized using infrared spectroscopy, SEM, and NMR 29Si and 13C solid state. Batch and column experiments were conducted to investigate for heavy metal removal from dilute aqueous solution by sorption onto Si-Pr-DPA. From a number of studies the affinity of various metal ions for the Si-Pr-DPA sorbent was determined to follow the order Fe(III) > Cr(III) >> Cu(II) > Cd(II) > Pb(II) > Ni(II). Two standard reference materials were used for checking the accuracy and precision of the method. The proposed method was successfully applied to the analysis of environmental samples. This ligand material has great advantage for adsorption of transition-metal ions from aqueous medium due to its high degree of organofunctionalization associated with the large adsorption capacity, reutilization possibility, and rapidity in reaching the equilibrium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A silica surface chemically modified with [3-(2,2'-dipyridylamine) propyl] groups was prepared, characterized, and evaluated for its metal ion preconcentration in fuel ethanol. To our knowledge, we are the first authors who have reported the present modification on silica gel surface. The material was characterized using infrared spectra, scanning electronic microscopy, and 13C and 29Si solid-state NMR spectra. Batch and column experiments were conducted to investigate for metal ion removal from fuel ethanol. The results showed that the Langmuir model describes the sorption equilibrium data of the metal ions in a satisfactory way. From the Langmuir isotherms, the following maximum adsorption capacities (in mmolg -1) were determined: 1.81 for Fe(III), 1.75 for Cr(III), 1.30 for Cu(II), 1.25 for Co(II), 1.15 for Pb(II), 0.95 for Ni(II), and 0.87 for Zn(II). Thermodynamic functions, the change of free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) showed that the adsorption of metal ions onto Si-Pr-DPA was feasible, spontaneous, and endothermic. The sorption-desorption of the metal ions made possible the development of a preconcentration and quantification method of metal ions in fuel ethanol. © 2012 Elsevier Inc.
Resumo:
The objective of this research was the preparation of a silsesquioxane functionalized with eight chloropropyl chains (T8-PrCl) and of a new derivative functionalized with a pendant linear chain (2-amino-1,3,4-thiadiazole - ATD; T8-Pr-ATD). The two nanostructured materials were characterized by 13C and 29Si NMR, FTIR and elemental analysis. The new nanostructured material, octakis[3-(2-amino-1,3,4-thiadiazole)propyl] octasilsesquioxane (T8-Pr-ATD), was tested as a ligand for transition-metal ions with a special attention to adsorption isotherms. The adsorption was performed using a batchwise process and the organofunctionalized surface showed the ability to adsorb the metal ions Cu (II), Co (II), and Ni (II) from water and ethanol. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) model. The kinetics of adsorption of metals were performed using three models such as pseudo-first order, pseudo-second order and Elovich. The Langmuir and Elovich models were the most appropriate to describe the adsorption and kinetic data, respectively. Furthermore, the T8-Pr-ATD was successfully applied to the analysis of environmental samples (river and sea water). Subsequently, a new nanomaterial was prepared by functionalization of the T8-Pr-ATD with a Mo (II) organometallic complex (T8-Pr-ATD-Mo). Only a few works in the literature have reported this type of substitution, and none dealt with ATD and Mo (II) complexes. The new Mo-silsesquioxane organometallic nanomaterial was tested as precursor in the epoxidation of cyclooctene and styrene. © 2012 Elsevier B.V.
Resumo:
An exocellular β-(1→6)-d-glucan (lasiodiplodan) produced by a strain of Lasiodiplodia theobromae (MMLR) grown on sucrose was derivatized by sulfonation to promote anticoagulant activity. The structural features of the sulfonated β-(1→6)-d-glucan were investigated by UV-vis, FT-IR and 13C NMR spectroscopy, and the anticoagulant activity was investigated by the classical coagulation assays APTT, PT and TT using heparin as standard. The content of sulfur and degree of substitution of the sulfonated glucan was 11.73% and 0.95, respectively. UV spectroscopy showed a band at 261 nm due to the unsaturated bond formed in the sulfonation reaction. Results of FT-IR and 13C NMR indicated that sulfonyl groups were inserted on the polysaccharide. The sulfonated β-(1→6)-d-glucan presented anticoagulant activity as demonstrated by the increase in dose dependence of APTT and TT, and these actions most likely occurred because of the inserted sulfonate groups on the polysaccharide. The lasiodiplodan did not inhibit the coagulation tests. © 2012 Elsevier Ltd.
Resumo:
A new tropane alkaloid, named the 7β-acetoxy-3β,6β- dibenzoyloxytropane (1), was isolated from a methanol extract of Erythroxylum rimosum O.E. Schulz leaves. Other known compounds were detected, including quercetin, kaempferol-3-O-α-l-arabinofuranoside, (+)-catechin, epicatechin, quercetin-3-O-α-arabinofuranoside, quercetin-3-O-α- arabinopyranoside, quercetin-3-O-β-arabinopyranoside, quercetin-3-β- glucopyranoside, kaempferol, quercetin-3-O-β-galactopyranoside, β-sitosterol, α-amyrin, β-amyrin, and the ester derivatives of these two amyrins. Compound 1 exhibited weak inhibition of acetylcholinesterase. Structural identification was performed using IR, ESIHRMS and one- and two-dimensional NMR data analyses and confirmed by comparison with literature data. © 2013 Phytochemical Society of Europe.
Resumo:
Rare earth complexes (RE) can be incorporated in silica matrixes, originating organic/inorganic hybrid materials with good thermal stability and high rare earth emission lines. In this work, the hybrid material was obtained by the polymeric precursor method and ultrasonic dispersed with spherical silica particles prepared by the Stöber Method. The Raman spectra indicated that the Eu3+ ions are involved in a polymeric structure formed as consequence of the chelation and polyesterification reactions of this ion with citric acid and ethylene glycol. After the ultrasonic stirring, 2-hydroxynicotinic ligand will also compose this polymeric rigid structure. The TGA/DTA analysis showed that this polymeric material was thermal decomposed at 300 °C. Moreover, this process allows the chelating process of the 2-hydroxynicotinic acid ligand to the Eu3+ ions. The 29Si NMR showed that the ultrasonic dispersion of the reactants was not able to promote the functionalization of the silica particles with the 2-hydroxynicotinic acid ligand. Moreover, heat treatment promotes the [Eu(HnicO2)3] complex particles incorporation into silica pores. At this temperature, the TGA curve showed that only the thermal degradation of ethylene glycol and citric acid used during the experimental procedure occurs. The silica and hybrid materials are composed by spherical and aggregated particles with particle size of approximately 450 nm, which can be influenced by the heat treatment. These materials also present an absorption band located at 337 nm. The photoluminescent study showed that when the hybrid samples were excited at 337 nm wavelength, the ligand absorbs the excitation light. Part of this energy is transferred to the Eu3+ ion, which main emission, 5D0→ 7F2, is observed in the emission spectrum at 612 nm. As the heating temperature increases to 300 C, the energy transfer is more favorable. The lifetime values showed that the Eu3+ emission is enhanced due to the energy transfer process in the powders. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)