953 resultados para Nonparametric regression techniques
Resumo:
We analyse the use of the ordered weighted average (OWA) in decision-making giving special attention to business and economic decision-making problems. We present several aggregation techniques that are very useful for decision-making such as the Hamming distance, the adequacy coefficient and the index of maximum and minimum level. We suggest a new approach by using immediate weights, that is, by using the weighted average and the OWA operator in the same formulation. We further generalize them by using generalized and quasi-arithmetic means. We also analyse the applicability of the OWA operator in business and economics and we see that we can use it instead of the weighted average. We end the paper with an application in a business multi-person decision-making problem regarding production management
Resumo:
Brain perfusion can be assessed by CT and MR. For CT, two major techniquesare used. First, Xenon CT is an equilibrium technique based on a freely diffusibletracer. First pass of iodinated contrast injected intravenously is a second method,more widely available. Both methods are proven to be robust and quantitative,thanks to the linear relationship between contrast concentration and x-ray attenuation.For the CT methods, concern regarding x-ray doses delivered to the patientsneed to be addressed. MR is also able to assess brain perfusion using the firstpass of gadolinium based contrast agent injected intravenously. This method hasto be considered as a semi-quantitative because of the non linear relationshipbetween contrast concentration and MR signal changes. Arterial spin labelingis another MR method assessing brain perfusion without injection of contrast. Insuch case, the blood flow in the carotids is magnetically labelled by an externalradiofrequency pulse and observed during its first pass through the brain. Eachof this various CT and MR techniques have advantages and limits that will be illustratedand summarised.Learning Objectives:1. To understand and compare the different techniques for brain perfusionimaging.2. To learn about the methods of acquisition and post-processing of brainperfusion by first pass of contrast agent for CT and MR.3. To learn about non contrast MR methods (arterial spin labelling).
Resumo:
This special issue aims to cover some problems related to non-linear and nonconventional speech processing. The origin of this volume is in the ISCA Tutorial and Research Workshop on Non-Linear Speech Processing, NOLISP’09, held at the Universitat de Vic (Catalonia, Spain) on June 25–27, 2009. The series of NOLISP workshops started in 2003 has become a biannual event whose aim is to discuss alternative techniques for speech processing that, in a sense, do not fit into mainstream approaches. A selected choice of papers based on the presentations delivered at NOLISP’09 has given rise to this issue of Cognitive Computation.
Resumo:
An e cient procedure for the blind inversion of a nonlinear Wiener system is proposed. We proved that the problem can be expressed as a problem of blind source separation in nonlinear mixtures, for which a solution has been recently proposed. Based on a quasi-nonparametric relative gradient descent, the proposed algorithm can perform e ciently even in the presence of hard distortions.
Resumo:
Plasma and cerebrospinal fluid (CSF) concentrations of the enantiomers of citalopram (CIT), its N-demethylated metabolite demethylcitalopram (DCIT) and its deaminated metabolite citalopram propionic acid derivative (CIT-PROP) were measured in plasma and CSF in 22 depressed patients after a 4-week treatment with 40 mg/d citalopram, which was preceded by a 1-week washout period. CSF 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) were measured at baseline and after the 4-week CIT medication period. Patients were assessed clinically, using the Hamilton Depression Rating Scale (21-item HAM-D): at baseline and then at weekly intervals. CSF concentrations of S-CIT and R-CIT were 10.6 +/- 4.3 and 20.9 +/- 6 ng/mL, respectively, and their CSF/plasma ratios were 52% +/- 9% and 48% +/- 6%, respectively. The CIT treatment resulted in a significant decrease (28%) of 5-HIAA (P < 0.0001) and a significant increase (41%) of HVA in the CSF. Multiple linear regression analyses were performed to identify the impact of plasma and CSF CIT enantiomers and its metabolites on CSF monoamine metabolites and clinical response. There were 10 responders as defined by a > or =50% decrease of the HAM-D score (DeltaHAM-D) after the 4-week treatment. DeltaHAM-D correlated (Spearman) significantly with CSF S-CIT (r = - 0.483, P < 0.05), CSF S-CIT-PROP (r = -0.543, P = 0.01) (a metabolite formed from CIT by monoamine oxidase [MAO]) and 5-HIAA decrease (Delta5-HIAA) (r = 0.572, P = 0.01). The demonstrated correlations between pharmacokinetic parameters and the clinical outcome as well as 5-HIAA changes indicate that monitoring of plasma S-CIT, CSF S-CIT and CSF S-CIT-PROP may be of clinical relevance.
Resumo:
In this paper we present a method for blind deconvolution of linear channels based on source separation techniques, for real word signals. This technique applied to blind deconvolution problems is based in exploiting not the spatial independence between signals but the temporal independence between samples of the signal. Our objective is to minimize the mutual information between samples of the output in order to retrieve the original signal. In order to make use of use this idea the input signal must be a non-Gaussian i.i.d. signal. Because most real world signals do not have this i.i.d. nature, we will need to preprocess the original signal before the transmission into the channel. Likewise we should assure that the transmitted signal has non-Gaussian statistics in order to achieve the correct function of the algorithm. The strategy used for this preprocessing will be presented in this paper. If the receiver has the inverse of the preprocess, the original signal can be reconstructed without the convolutive distortion.
Resumo:
The complex structural organization of the white matter of the brain can be depicted in vivo in great detail with advanced diffusion magnetic resonance (MR) imaging schemes. Diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique-the mapping of apparent diffusion coefficient values-to the more complex, such as diffusion tensor imaging, q-ball imaging, diffusion spectrum imaging, and tractography. The type of structural information obtained differs according to the technique used. To fully understand how diffusion MR imaging works, it is helpful to be familiar with the physical principles of water diffusion in the brain and the conceptual basis of each imaging technique. Knowledge of the technique-specific requirements with regard to hardware and acquisition time, as well as the advantages, limitations, and potential interpretation pitfalls of each technique, is especially useful.
Resumo:
We propose a deep study on tissue modelization andclassification Techniques on T1-weighted MR images. Threeapproaches have been taken into account to perform thisvalidation study. Two of them are based on FiniteGaussian Mixture (FGM) model. The first one consists onlyin pure gaussian distributions (FGM-EM). The second oneuses a different model for partial volume (PV) (FGM-GA).The third one is based on a Hidden Markov Random Field(HMRF) model. All methods have been tested on a DigitalBrain Phantom image considered as the ground truth. Noiseand intensity non-uniformities have been added tosimulate real image conditions. Also the effect of ananisotropic filter is considered. Results demonstratethat methods relying in both intensity and spatialinformation are in general more robust to noise andinhomogeneities. However, in some cases there is nosignificant differences between all presented methods.
Resumo:
RATIONALE: An objective and simple prognostic model for patients with pulmonary embolism could be helpful in guiding initial intensity of treatment. OBJECTIVES: To develop a clinical prediction rule that accurately classifies patients with pulmonary embolism into categories of increasing risk of mortality and other adverse medical outcomes. METHODS: We randomly allocated 15,531 inpatient discharges with pulmonary embolism from 186 Pennsylvania hospitals to derivation (67%) and internal validation (33%) samples. We derived our prediction rule using logistic regression with 30-day mortality as the primary outcome, and patient demographic and clinical data routinely available at presentation as potential predictor variables. We externally validated the rule in 221 inpatients with pulmonary embolism from Switzerland and France. MEASUREMENTS: We compared mortality and nonfatal adverse medical outcomes across the derivation and two validation samples. MAIN RESULTS: The prediction rule is based on 11 simple patient characteristics that were independently associated with mortality and stratifies patients with pulmonary embolism into five severity classes, with 30-day mortality rates of 0-1.6% in class I, 1.7-3.5% in class II, 3.2-7.1% in class III, 4.0-11.4% in class IV, and 10.0-24.5% in class V across the derivation and validation samples. Inpatient death and nonfatal complications were <or= 1.1% among patients in class I and <or= 1.9% among patients in class II. CONCLUSIONS: Our rule accurately classifies patients with pulmonary embolism into classes of increasing risk of mortality and other adverse medical outcomes. Further validation of the rule is important before its implementation as a decision aid to guide the initial management of patients with pulmonary embolism.
Resumo:
Remote sensing was utilized in the Phase II Cultural Resources Investigation for this project in lieu of extensive excavations. The purpose of the present report is to compare the costs and benefits of the use of remote sensing to the hypothetical use of traditional excavation methods for this project. Estimates for this hypothetical situation are based on the project archaeologist's considerable past experience in conducting similar investigations. Only that part of the Phase II investigation involving field investigations is addressed in this report. Costs for literature review, laboratory analysis, report preparation, etc., are not included. The project manager proposed the use of this technique for the fol lowing logistic, safety and budgetary reasons.
Resumo:
A study of four major concrete pavement joint rehabilitation techniques has been conducted, including: pressure relief joints, full-depth repairs, partial-depth repairs and joint resealing. The products of this research include the following for each technique: a summary of published research, detailed documentation of the design and performance of the 36 projects, conclusions and recommendations of the state highway engineers panel, "Design and Construction Guidelines" and "Guide Specifications." The latter two products are prepared for use by state highway agencies. The results of this study are based upon a review of literature, extensive field surveys and analysis of 36 rehabilitation projects, and the experience of an expert panel of state highway engineers.