982 resultados para Nonlinear activation functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze how a contest organizer chooses optimally the winner when the contestants' efforts are already exerted and commitment to the use of a given contest success function is not possible. We de…ne the notion of rationalizability in mixed-strategies to capture such a situation. Our approach allows to derive different contest success functions depending on the aims and attitudes of the decider. We derive contest success functions which are closely related to commonly used functions providing new support for them. By taking into account social welfare considerations our approach bridges the contest literature and the recent literature on political economy. Keywords: Endogenous Contests, Contest Success Function, Mixed-Strategies. JEL Classi…cation: C72 (Noncooperative Games), D72 (Economic Models of Political Processes: Rent-Seeking, Elections), D74 (Conflict; Conflict Resolution; Alliances)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cell recognition of antigens displayed on the surface of antigen presenting cell results in rapid activation of protein tyrosine kinases and kinase C. This process leads to second messengers, such as inositol phosphates and diacylgycerol, and phosphorylation of multiple proteins. The role of different protein kinases in the activation of peripheral blood mononuclear cells (PBMC) from Schistosoma mansoni infected individuals was evaluated using genistein and H-7, specific inhibitors of protein tyrosine kinase and kinase C, respectively. Our results showed that proliferation in response to soluble egg antigen or adult worm antigen preparation of S. mansoni was reduced when PBMC were cultured in presence of protein kinase inhibitors. Using these inhibitors on in vitro granuloma reaction, we also observed a marked reduction of granuloma index. Taken together, our results suggest that S. mansoni antigen activation of PBMC involves protein kinases activity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromatin insulators are defined as transcriptionally neutral elements that prevent negative or positive influence from extending across chromatin to a promoter. Here we show that yeast subtelomeric anti-silencing regions behave as boundaries to telomere-driven silencing and also allow discontinuous propagation of silent chromatin. These two facets of insulator activity, boundary and silencing discontinuity, can be recapitulated by tethering various transcription activation domains to tandem sites on DNA. Importantly, we show that these insulator activities do not involve direct transcriptional activation of the reporter promoter. These findings predict that certain promoters behave as insulators and partition genomes in functionally independent domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attempts to inhibit the recognition of soluble antigens by T lymphocytes using antibodies specific for the antigen in question have been uniformally unsuccessful, in contrast to the observed specific inhibition of antibody generation by B cells. One exception is the unique situation whereby anti-hapten antisera inhibit the T-cell proliferative responses observed when hapten-specific T lymphocytes or clones are cultured with hapten-derivatized cells or proteins. The inability to inhibit T-cell functions by antigen-specific antibodies has been interpreted in several ways: (1) T cells possess a different repertoire from B cells; (2) the antibodies tested recognize epitopes present on the native antigen, whereas T cells recognize non-native (processed) structures; (3) the antigenic determinant(s) recognized by T cells on the surface of antigen presenting cells are either not accessible to antibodies, or are present in low amounts. The development of antigen-specific T-cell clones and monoclonal antibodies both specific for the same antigenic determinants now allows this question to be investigated definitively. Here, we report for the first time the specific inhibition of antigen-induced T-cell clone proliferation by a monoclonal antibody directed against the relevant soluble protein antigen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define different concepts of group strategy-proofness for social choice functions. We discuss the connections between the defined concepts under different assumptions on their domains of definition. We characterize the social choice functions that satisfy each one of them and whose ranges consist of two alternatives, in terms of two types of basic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the eosinophil NADPH oxidase and the subsequent release of toxic oxygen radicals has been implicated in the mechanism of parasite killing and inflammation. At present, little is known of the signal transduction pathway that govern agonist-induced activation of the respiratory burst and is the subject of this review. In particular, we focus on the ability of leukotrine B4 to activate the NADPH oxidase in guinea-pig peritoneal eosinophils which can be obtained in sufficient number and purity for detailed biochemical experiments to be performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eosinophils preferentially accumulate at sites of chronic allergic diseases such as bronchial asthma. The mechanisms by which selective eosinophil migration occurs are not fully understood. However, interactions of cell-surface adhesion molecules on the eosinophil with molecular counterligands on endothelial and epithelial cells, and on extracellular matrix proteins, are likely to be critical during the recruitment process. One possible mechanism for selective eosinophil recruitment involves the alpha4beta 1 (VLA-4) integrin which is not expressed on neutrophils. Correlations have been found between infiltration of eosinophils and endothelial expression of VCAM-1, the ligand for VLA-4, in the lungs of asthmatic individuals as well as in late phase reactions in the lungs, nose and skin. Epithelial and endothelial cells respond to the Th2-type cytokines IL-4 and IL-13 with selective de novo expression of VCAM-1, consistent with the possible role of VCAM-1/VLA-4 interactions in eosinophil influx during allergic inflammation. Both beta 1 and beta 2 integrins on eosinophils exist in a state of partial activation. For example, eosinophils can be maximally activated for adhesion to VCAM-1 or fibronectin after exposure to beta 1 integrin-activating antibodies or divalent cations, conditions that do not necessarily affect the total cell surface expression of beta 1 integrins. In contrast, cytokines like IL-5 prevent beta 1 integrin activation while promoting beta 2 integrin function. Furthermore, ligation of integrins can regulate the effector functions of the cell. For example, eosinophil adhesion via beta 1 and/or beta 2 integrins has been shown to alter a variety of functional responses including degranulation and apoptosis. Thus, integrins appear to be important in mediating eosinophil migration and activation in allergic inflammation. Strategies that interfere with these processes may prove to be useful for treatment of allergic diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the eosinophil's effector functions clearly can contribute to the pathogenesis of allergic diseases, the evolutionary benefit to having eosinophils as a distinct class of leukocytes is not clear, especially if one must reconsider the nominally beneficial role of eosinophils in parasite host defense. Eosinophils are equipped to respond to lymphocytes and their cytokines (and not solely the eosinophil growth factor cytokines), but the functional consequences of such eosinophil responses need to be defined. Conversely, eosinophils, as antigen-presenting cells (APCs) or sources of lymphocyte-active cytokines, may stimulate and effect lymphocyte functioning. Eosinophils share with CD4+ lymphocytes expression of a number of receptors, including CD4 and IL-2R, and specific alpha4 integrins that may help in their common recruitment and activation. Further, elucidation of the interactions between lymphocytes and eosinophils will contribute to a broader understanding of the functioning of eosinophils in "normal" ongoing immune responses and in allergic disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes play a central role in the brain by regulating glutamate and extracellular potassium concentrations ([K+]0), both released by neurons into the extracellular space during neuronal activity. Glutamate uptake is driven by the inwardly directed sodium gradient across the astrocyte membrane and involves the influx of three sodium ions and one proton and the efflux of one K+ ion per glutamate molecule. The glutamate transport induced rise in intracellular sodium stimulates the Na+/K+-ATPase which leads to significant energetic costs in astrocytes. To evaluate how these two fundamental functions of astrocytes, namely glutamate transport and K+ buffering, which are directly associated with neuronal activity, coexist and if they influence each other, in this thesis work we examined different cellular parameters of astrocytes. We therefore investigated the impact of altered [K+]0 on glutamate transporter activity. To assess this question we measured intracellular sodium fluctuations in mouse primary cultured astrocytes using dynamic fluorescence imaging. We found that glutamate uptake was tightly modulated both in amplitude and kinetics by [K+]0. Elevated [K+]0 strongly decreased glutamate transporter activity, with significant consequences on the cells energy metabolism. To ultimately evaluate potential effects of [K+]0 and glutamate on the astrocyte mitochondrial energy production we extended these studies by investigating their impact on the cytosolic and mitochondrial pH. We found that both [K+],, and glutamate strongly influenced cytosolic and mitochondrial pH, but in opposite directions. The effect of a simultaneous application of K+ and glutamate, however, did not fit with the arithmetical sum of each individual effects, suggesting that an additional non¬linear process is involved. We also investigated the impact of [K+]0 and glutamate transport, respectively, on intracellular potassium concentrations ([K+]0 in cultured astrocytes by characterizing and applying a newly developed Insensitive fluorescent dye. We observed that [K+]i followed [K+]0 changes in a nearly proportional way and that glutamate superfusion caused a reversible, glutamate-concentration dependent drop of [K+],, Our study shows the powerful influence of [K+]u on glutamate capture. These findings have strong implications for our understanding of the tightly regulated interplay between astrocytes and neurons in situations where [K+]0 undergoes large activity-dependent fluctuations. However, depending on the extent of K+ versus glutamate extracellular rise, energy metabolism in astrocytes will be differently regulated. Moreover, the novel insights obtained during this thesis work help understanding some of the underlying processes that prevail in certain pathologies of central nervous system, such as epilepsy and stroke. These results will possibly provide a basis for the development of novel therapeutic strategies. -- Les astrocytes jouent un rôle central dans le cerveau en régulant les concentrations de potassium (K+) et de glutamate, qui sont relâchés par les neurones dans l'espace extracellulaire lorsque ceux- ci sont actifs. La capture par les astrocytes du glutamate est un processus secondairement actif qui implique l'influx d'ions sodium (Na+) et d'un proton, ainsi que l'efflux d'ions K+, ce processus entraîne un coût métabolique important. Nous avons évalué comment ces fonctions fondamentales des astrocytes, la régulation du glutamate et du K+ extracellulaire, qui sont directement associés à l'activité neuronale, coexistent et si elles interagissent, en examinant différents paramètres cellulaires. Dans ce projet de thèse nous avons évalué l'impact des modifications de la concentration de potassium extracellulaire ([K+],,) sur le transport du glutamate. Nous avons mesuré le transport du glutamate par le biais des fluctuations internes de Na+ grâce à un colorant fluorescent en utilisant de l'imagerie à fluorescence dynamique sur des cultures primaires d'astrocytes. Nous avons trouvé que la capture du glutamate était étroitement régulée par [K+]0 aussi bien dans son amplitude que dans sa cinétique. Par la suite, nous avons porté notre attention sur l'impact de [K+]0 et du glutamate sur le pH cytosolique et mitochondrial de l'astrocyte dans le but, in fine, d'évaluer les effets potentiels sur la production d'énergie par la mitochondrie. Nous avons trouvé qu'autant le K+ que le glutamate, de manière individuelle, influençaient fortement le pH, cependant dans des directions opposées. Leurs effets individuels, ne peuvent toutefois pas être additionnés ce qui suggère qu'un processus additionnel non-linéaire est impliqué. En appliquant une nouvelle approche pour suivre et quantifier la concentration intracellulaire de potassium ([K+]0 par imagerie à fluorescence, nous avons observé que [K+]i suivait les changements de [K+]0 de manière quasiment proportionnelle et que la superfusion de glutamate induisait un décroissement rapide et réversible de [K+]i, qui dépend de la concentration de glutamate. Notre étude démontre l'influence de [K+]0 sur la capture du glutamate. Ces résultats permettent d'améliorer notre compréhension de l'interaction entre astrocytes et neurones dans des situations où [K+]0 fluctue en fonction de l'activité neuronale. Cependant, en fonction de l'importance de l'augmentation extracellulaire du K+ versus le glutamate, le métabolisme énergétique des astrocytes va être régulé de manière différente. De plus, les informations nouvelles que nous avons obtenues durant ce travail de thèse nous aident à comprendre quelques- uns des processus sous-jacents qui prévalent dans certaines pathologies du système nerveux central, comme par exemple l'épilepsie ou l'accident vasculaire cérébral. Ces informations pourront être importantes à intégrer dans la cadre du développement de nouvelles stratégies thérapeutiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the mediators of pleiotropic drug resistance in Saccharomyces cerevisiae is the ABC-transporter gene PDR5. This gene is regulated by at least two transcription factors with Zn(2)-Cys(6) finger DNA-binding motifs, Pdr1p and Pdr3p. In this work, we searched for functional homologues of these transcription factors in Candida albicans. A C. albicans gene library was screened in a S. cerevisiae mutant lacking PDR1 and PDR3 and clones resistant to azole antifungals were isolated. From these clones, three genes responsible for azole resistance were identified. These genes (CTA4, ASG1 and CTF1) encode proteins with Zn(2)-Cys(6)-type zinc finger motifs in their N-terminal domains. The C. albicans genes expressed in S. cerevisiae could activate the transcription of a PDR5-lacZ reporter system and this reporter activity was PDRE-dependent. They could also confer resistance to azoles in a S. cerevisiae strain lacking PDR1, PDR3 and PDR5, suggesting that CTA4-, ASG1- and CTF1-dependent azole resistance can be caused by genes other than PDR5 in S. cerevisiae. Deletion of CTA4, ASG1 and CTF1 in C. albicans had no effect on fluconazole susceptibility and did not alter the expression of the ABC-transporter genes CDR1 and CDR2 or the major facilitator gene MDR1, which encode multidrug transporters known as mediators of azole resistance in C. albicans. However, additional phenotypic screening tests on the C. albicans mutants revealed that the presence of ASG1 was necessary to sustain growth on non-fermentative carbon sources (sodium acetate, acetic acid, ethanol). In conclusion, C. albicans possesses functional homologues of the S. cerevisiae Pdr1p and Pdr3p transcription factors; however, their properties in C. albicans have been rewired to other functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. METHODS AND RESULTS: Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl(3)-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. CONCLUSIONS: Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a member of the nuclear hormone superfamily originally characterized as a regulator of adipocyte differentiation and lipid metabolism. In addition, PPAR-gamma has important immunomodulatory functions. If the effect of PPAR-gamma's activation in T-cell-mediated demyelination has been recently demonstrated, nothing is known about the role of PPAR-gamma in antibody-induced demyelination in the absence of T-cell interactions and monocyte/macrophage activation. Therefore, we investigated PPAR-gamma's involvement by using an in vitro model of inflammatory demyelination in three-dimensional aggregating rat brain cell cultures. We found that PPAR-gamma was not constitutively expressed in these cultures but was strongly up-regulated following demyelination mediated by antibodies directed against myelin oligodendrocyte glycoprotein (MOG) in the presence of complement. Pioglitazone, a selective PPAR-gamma agonist, partially protected aggregates from anti-MOG demyelination. Heat shock responses and the expression of the proinflammatory cytokine tumor necrosis factor-alpha were diminished by pioglitazone treatment. Therefore, pioglitazone protection seems to be linked to an inhibition of glial cell proinflammatory activities following anti-MOG induced demyelination. We show that PPAR-gamma agonists act not only on T cells but also on antibody-mediated demyelination. This may represent a significant benefit in treating multiple sclerosis patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TRAIL induces apoptosis through two closely related receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5). Here we show that TRAIL-R1 can associate with TRAIL-R2, suggesting that TRAIL may signal through heteroreceptor signaling complexes. Both TRAIL receptors bind the adaptor molecules FADD and TRADD, and both death signals are interrupted by a dominant negative form of FADD and by the FLICE-inhibitory protein FLIP. The recruitment of TRADD may explain the potent activation of NF-kappaB observed by TRAIL receptors. Thus, TRAIL receptors can signal both death and gene transcription, functions reminiscent of those of TNFR1 and TRAMP, two other members of the death receptor family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DCs) serve as a link between the innate and adaptive immune systems. The activation state of DCs is crucial in this role. However, when DCs are isolated from lymphoid tissues, purified and placed in culture they undergo 'spontaneous' activation. The basis of this was explored, using up-regulation of DC surface MHC II, CD40, CD80 and CD86 as indicators of DC activation. No evidence was found for DC damage during isolation or for microbial products causing the activation. The culture activation of spleen DCs differed from that of Langerhans cells when released from E-cadherin-mediated adhesions, since E-cadherin was not detected and activation still occurred with β-catenin null DCs. Much of the activation could be attributed to DC-DC interactions. Although increases in surface MHC II levels occurred under all culture conditions tested, the increase in expression of CD40, CD80 and CD86 was much less under culture conditions where such interactions were minimised. DC-to-DC contact under the artificial conditions of high DC concentration in culture induced the production of soluble factors and these, in turn, induced the up-regulation of co-stimulatory molecules on the DC surface.