928 resultados para Noble metal nanoparticles
Resumo:
The free radical polymerization of acrylonitrile (AN) initiated by Cu(I1) 4-anilino 3-pentene 2-one [Cu(II) ANIPO] Cu(II), 4-p-toluedeno 3-pentene 2-one [Cu(II) TPO], and Cu(I1) 4-p-nitroanilino 3-pentene 2-one [Cu(II) NAPO] was studied in benzene at 50 and 60°C and in carbon tetrachloride (CCld), dimethyl sulfoxide (DMSO), and methanol (MeOH) at 60°C. Although the polymerization proceeded in a heterogeneous phase, it followed the kinetics of a homogeneous process. The monomer exponents were 22 at two different temperatures and in different solvents. The square-root dependence of R, on initiator concentration and higher monomer exponents accounted for a 1:2 complex formation between the chelate and monomer. The complex formatign was shown by ultraviolet (UV) study. The activation energies, kinetics, and chain transfer constants were also evaluated.
Resumo:
With many innovations in process technology, forging is establishing itself as a precision manufacturing process: as forging is used to produce complex shapes in difficult materials, it requires dies of complex configuration of high strength and of wear-resistant materials. Extensive research and development work is being undertaken, internationally, to analyse the stresses in forging dies and the flow of material in forged components. Identification of the location, size and shape of dead-metal zones is required for component design. Further, knowledge of the strain distribution in the flowing metal indicates the degree to which the component is being work hardened. Such information is helpful in the selection of process parameters such as dimensional allowances and interface lubrication, as well as in the determination of post-forging operations such as heat treatment and machining. In the presently reported work the effect of aperture width and initial specimen height on the strain distribution in the plane-strain extrusion forging of machined lead billets is observed: the distortion of grids inscribed on the face of the specimen gives the strain distribution. The stress-equilibrium approach is used to optimise a model of flow in extrusion forging, which model is found to be effective in estimating the size of the dead-metal zone. The work carried out so far indicates that the methodology of using the stress-equilibrium approach to develop models of flow in closed-die forging can be a useful tool in component, process and die design.
Resumo:
A new two-dimensional 3d-4f mixed-metal mixed dicarboxylate (homocyclic and heterocyclic) of the formula [Gd2(H2O)2Ni(H2O)2(1,2-bdc)2(2,5-pydc)2] 3 8H2O (1; 1,2-H2bdc = 1,2-benzenedicarboxylic acid and 2,5-H2pydc = 2,5- pyridinedicarboxylic acid) has been prepared by employing the hydrothermal method. The structure has infinite onedimensional-Gd-O-Gd- chains formed by the edge-shared GdO9 polyhedral units, resulting exclusively from the connectivity between the Gd3+ ions and the 1,2-bdc units. The chains are connected by the [Ni(H2O)2(2,5-pydc)2]2- metalloligand, forming the two-dimensional layer arrangements. The stacking of the layers creates hydrophilic and hydrophobic spaces in the interlamellar region. A one-dimensional water ladder structure, formed by the extraframework water molecules, occupies the hydrophilic region while the benzene ring of 1,2-bdc occupies the hydrophobic region. To the best of our knowledge, the present compound represents the first example of a 3d-4f mixed-metal carboxylate in which two different aromatic dicarboxylate anions act as the linkers. The stabilization energies of the water clusters have been evaluated using density functional theory calculations. The water molecules in 1 are fully reversible accompanied by a change in color (greenish blue to brown) and coordination around Ni2+ ions (octahedral to distorted tetrahedral).
Resumo:
Metal oxide semiconductor (MOS) sensors are a class of chemical sensor that have potential for being a practical core sensor module for an electronic nose system in various environmental monitoring applications. However, the responses of these sensors may be affected by changes in humidity and this must be taken into consideration when developing calibration models. This paper characterises the humidity dependence of a sensor array which consists of 12 MOS sensors. The results were used to develop calibration models using partial least squares. Effects of humidity on the response of the sensor array and predictive ability of partial least squares are discussed. It is shown that partial least squares can provide proper calibration models to compensate for effects caused by changes in humidity.
Resumo:
Metal oxide semiconductor (MOS) sensors are a class of chemical sensors that have potential for being a practical core sensor module for an electronic nose system in various environmental monitoring applications. However, the responses of these sensors may be affected by changes in humidity and this must be taken into consideration when developing calibration models. This paper characterises the humidity dependence of a sensor array which consists of 12 MOS sensors. The results were used to develop calibration models using partial least squares (PLS). Effects of humidity on the response of the sensor array and predictive ability of partial least squares are discussed. It is shown that partial least squares can provide proper calibration models to compensate for effects caused by changes in humidity. Special Issue: Selected Paper from the 12th International Symposium on Olfaction and Electronic Noses - ISOEN 2007, International Symposium on Olfaction and Electronic Noses.
Resumo:
Valinomycin, an ionophore of considerable interest for its ion selectivity, and its K+, Mg2+, Ba2+, and Ca2+ complexes were studied by Raman spectroscopy. Each complex has a characteristic spectrum which differs from that of uncomplexed valinomycin, suggesting several distinct structures for each of the metal-valinomycin complexes. The biologically active potassium complex shows the most significant changes in its spectrum, especially in the intensity of the symmetric C---H stretching vibration of CH3 and the convergence of the two ester carbonyl stretching vibration bands into one complex formation. These results are due to the unique orientation of the ester carbonyl groups toward the caged potassium ion and the resulting more free rotation of isopropyl side chains. The divalent cation-valinomycin complexes examined showed spectra which differed in each case uniquely from both valinomycin and its complex with potassium.
Resumo:
X-ra!. K-absorption spectra of niobium in niobium dichalcogenides. namely NbS, and NbSe, and their first-row transition-metal intercalates Mi P 3N bSz (M = Cr. Mn. Fe. Co. Ni) and Ml#,NbSe2 (M = Fe. CO). have been measured together with those in niobium metal. The spectra of these materials are \er? similar to one another. They reflect the transitions to the partially filled niobium d band with some p character. A bariety of x-ray absorption nearedge structures (XASES) associated with the K edges of intercalated atoms are also presented and discussed.
Resumo:
This study investigates the mechanism of action of transition metal chromites on the decomposition of ammonium perchlorate.
Resumo:
Isolating, purifying, and identifying proteins in complex biological matrices is often difficult, time consuming, and unreliable. Herein we describe a rapid screening technique for proteins in biological matrices that combines selective protein isolation with direct surface enhanced Raman spectroscopy (SERS) detection. Magnetic core gold nanoparticles were synthesised, characterised, and subsequently functionalized with recombinant human erythropoietin (rHuEPO)-specific antibody. The functionalized nanoparticles were used to capture rHuEPO from horse blood plasma within 15 minutes. The selective binding between the protein and the functionalized nanoparticles was monitored by SERS. The purified protein was then released from the nanoparticles’ surface and directly spectroscopically identified on a commercial nanopillar SERS substrate. ELISA independently confirmed the SERS identification and quantified the released rHuEPO. Finally, the direct SERS detection of the extracted protein was successfully demonstrated for in-field screening by a handheld Raman spectrometer within 1 minute sample measurement time.
Resumo:
Two new three-dimensional metal-organic frameworks (MOFs) [Mn-2(mu(3)-OH)(H2O)(2)(BTC)]-2 H2O, I, and [NaMn(BTC)], II (BTC=1,2,4-benzenetricarboxylate = trimellitate) were synthesized and their structures determined by single-crystal X-ray diffraction (XRD). In I, the Mn-4 cluster, [Mn-4(mu(5)-OH)(2)(H2O)(4)O-12], is connected with eight trimellitate anions and each trimellitate anion connects to four different Mn-4 clusters, resulting in a fluorite-like structure. In II, the Mn2O8 dimer is connected with two Na+ ions through carboxylate oxygen to form mixed-metal distorted Kagome-related two-dimensional -M-O-M- layers, which are pillared by the trimellitate anions forming the three-dimensional structure. The extra-framework water molecules in I are reversibly adsorbed and are also corroborated by powder XRD studies. The formation of octameric water clusters involving free and coordinated water molecules appears to be new. Interesting magnetic behavior has been observed for both compounds. Electron spin resonance (ESR) studies indicate a broadening of the signal below the ordering temperature and appear to support the findings of the magnetic studies.
Resumo:
An attempt has been made at synthesis and in resolving some of the uncertainties related to the assignments of charge-transfer satellites in the X-ray photoelectron spectra of transition-metal and rare-earth compounds. New satellites are reported in the ligand core-hole spectra as well as in the metal core-level spectra of oxides of second- and third-row transition metals including rare earths. Satellites in the ligand levels and the metal levels tend to be mutually exclusive, a behaviour that can be understood on the basis of metal-ligand overlap. Systematics in the intensities and energy separations of satellites in the first-row transition-metal compounds have been examined in order to gain an insight into the nature of these satellites. A simple model involving the sudden approximation has been employed to explain the observed systematics in intensities of satellites appearing next to metal and ligand core levels on the basis of metal-ligand overlap.
Resumo:
Vacuum pyrolysis of ammonium perchlorate (AP) and ammonium perchlorate/polystyrene (PS) propellant has been studied by differential thermal analysis (DTA) in order to observe the effect of transition metal oxides on sublimation. Sublimation and decomposition being competitive processes, their proportions depend on the pressure of the pyrolysis chamber. The enthalpies for complete decomposition and complete sublimation are available from the literature and by using these data together with DTA area measurements, the extents of sublimation and decomposition have been calculated for AP and the propellant system. The effect of the metal ions on the extent and rate of sublimation depends on their nature. For AP the extent of sublimation increases with a decrease in particle size. For the propellants the powder sublimes more readily than the bulk material, but in the presence of metal ions the bulk material sublimes more readily than the powder. To substantiate this finding, the effect of MnO2 on AP sublimation as a function of particle size was examined, and it was observed that the extent of sublimation decreases as the particle size decreases.
Resumo:
The influence of MnO2, CuO, and NiO on the thermal decomposition and explosivity of arylammonium perchlorates has been studied by differential thermal analysis (DTA) and explosive sensitivity measurements. The metal oxides considerably sensitize both decomposition and explosion and the sensitizing effect is in the order NiO < CuO < MnO2. The accelerated decomposition or explosion seems to occur via the formation of an intermediate, metal perchlorate arylamine complex. The experimental evidence for the mechanism put forward has been included.
Resumo:
The effect of transition metal oxides (Fe2O3, MnO2, Ni2O3 and Co2O3) on polystyrene/ammonium perchlorate propellant systems has been examined. The mechanism of action of the oxides in increasing the burning rate was examined by studying the effect of the oxides on the thermal decomposition and combustion of the oxidizer and the propellant. It has been concluded that one of the mechanisms by which the oxides act is by promoting the charge-transfer process, which is indicated by the enhancement of the electron-transfer process in ammonium perchlorate and by the correlation between the redox potential of the metal ions and the corresponding burning rates of the propellant.