972 resultados para Niobium.
Resumo:
A controversy currently exists regarding the number of Toba eruptive events represented in the tephra occurrences across peninsular India. Some claim the presence of a single bed, the 75,000-yr-old Toba tephra; others argue that dating and archaeological evidence suggest the presence of earlier Toba tephra. Resolution of this issue was sought through detailed geochemical analyses of a comprehensive suite of samples, allowing comparison of the Indian samples to those from the Toba caldera in northern Sumatra, Malaysia, and, importantly, the sedimentary core at ODP Site 758 in the Indian Ocean - a core that contains several of the earlier Toba tephra beds. In addition, two samples of Toba tephra from western India were dated by the fission-track method. The results unequivocally demonstrate that all the presently known Toba tephra occurrences in peninsular India belong to the 75,000 yr B.P. Toba eruption. Hence, this tephra bed can be used as an effective tool in the correlation and dating of late Quaternary sedimentary sequences across India and it can no longer be used in support of a middle Pleistocene age for associated Acheulian artifacts.
Resumo:
The major-element and most of the trace-element data from the different laboratories that contributed to the study of samples recovered during Leg 82 are presented in the following tables. The different basalt groups, identified on the basis of their chemical properties (major and trace elements), were defined from the data available on board the Glomar Challenger as the cruise progressed (see site chapters, all sites, this volume). Most of the data obtained since the end of the cruise and presented in these tables confirm the classification that was proposed by the shipboard party (see site chapters, all sites, this volume). Nevertheless, special mention should be made about Site 564. The shipboard party proposed a single chemical group at this site but noticed significant variations down the hole, mainly in trace-element data. However, the range of variation was small compared to the precision of the measurements. These variations were confirmed by the onshore studies (see papers in Part IV of this volume, especially Brannon's paper, partly devoted to this topic).
Resumo:
Volcanic ash was recovered from lower Aptian to Albian deposits from DSDP Sites 463, 465, and 466; pelagic clay of the upper Pleistocene to Upper Cretaceous was recovered mainly from Site 464, with minor amounts at Sites 465 and 466. We present X-ray-mineralogy data on pelagic clay and altered volcanic ash recovered from the four Leg 62 sites. In addition, two ash samples from Sites 463 and 465, a pelagic clay from Site 464, and a clay vein from the basaltic basement at Site 464 each were analyzed for major, minor, and trace elements. Our purpose is to describe the mineralogy and chemistry of altered ash and pelagic clays, to determine the sources of their parent material, and to delineate the diagenetic history of these clay-rich deposits. Correlation of chemistry and mineralogy of ash and pelagic clay with volcanic rocks suspected to be their parent material is not always straightforward, because weathering and diagenetic alteration caused depletion or enrichment of many elements.
Resumo:
Ferromanganese concretions spread out on the bottom of the shallow northwest part of the Black Sea are mainly represented by Fe and Mn nodules on shells and substituted worm tubes. Element composition of these formations was measured by methods of chemical, atomic absorbtion, neutron activation, and ICP-MS analyses. It was established that Fe and Mn contents and Mn/Fe ratio in the concretions varied considerably and which controlled occurrence of several associated metals and minor elements; some of them have not been studied in Black Sea concretions before.
Resumo:
Data presented in the paper suggest significant differences between thermodynamic conditions, under which magmatic complexes were formed in MAR at 29°-34°N and 12°-18°N. Melts occurring at 29°-34°N were derived by melting of a mantle source with homogeneous distribution of volatile components and arrived at the surface without significant fractionation, likely, due to their rapid ascent. The MAR segments between 12° and 18°N combine contrasting geodynamic environments of magmatism, which predetermined development of a large plume region with widespread mixing of melting products of geochemically distinct mantle sources. At the same time, this region is characterized by conditions favorable for origin of localized zones of anomalous plume magmatism. These sporadic magmatic sources were spatially restricted to MAR fragments with the Hess crust, whose compositional and mechanical properties were, perhaps, favorable for focusing and localization of plume magmatism. The plume source between 12° and 18°N beneath MAR may be geochemically heterogeneous.
Resumo:
Ashes occurring both as distinct layers and mixed with pelagic sediments of the hydrothermal mounds lying south of the Galapagos Rift are mainly rhyolitic and basaltic. The ashes, of rhyolitic to intermediate composition, appear to belong to a calc-alkalic series and were probably derived from Plinian eruptions in Ecuador or Colombia. Basaltic ashes are made of nonvesicular sideromelane spalling shards and are of tholeiitic composition. They probably were derived locally from fault scarps. Most rhyolitic and basaltic glass shards studied are fresh except for hydration of the rhyolitic shards. Some shards are severely altered, however. Basaltic ash may be more common in pelagic sediments deposited near accretion zones and may be a source of silica and other elements released during diagenesis
Resumo:
The monograph summarizes results of petrological and geochemical studies of rocks from the ocean floor collected by the authors during expeditions to the Central Atlantic. Detailed work in the Capa Verde transform fault zone gave a large amount of new information about magmatic and hydrothermal systems of the Mid-Atlantic Ridge.
Resumo:
Seventeen basalts from Ocean Drilling Program (ODP) Leg 183 to the Kerguelen Plateau (KP) were analyzed for the platinum-group elements (PGEs: Ir, Ru, Rh, Pt, and Pd), and 15 were analyzed for trace elements. Relative concentrations of the PGEs ranged from ~0.1 (Ir, Ru) to ~5 (Pt) times primitive mantle. These relatively high PGE abundances and fractionated patterns are not accounted for by the presence of sulfide minerals; there are only trace sulfides present in thin-section. Sulfur saturation models applied to the KP basalts suggest that the parental magmas may have never reached sulfide saturation, despite large degrees of partial melting (~30%) and fractional crystallization (~45%). First order approximations of the fractionation required to produce the KP basalts from an ~30% partial melt of a spinel peridotite were determined using the PELE program. The model was adapted to better fit the physical and chemical observations from the KP basalts, and requires an initial crystal fractionation stage of at least 30% olivine plus Cr-spinel (49:1), followed by magma replenishment and fractional crystallization (RFC) that included clinopyroxene, plagioclase, and titanomagnetite (15:9:1). The low Pd values ([Pd/Pt]_pm < 1.7) for these samples are not predicted by currently available Kd values. These Pd values are lowest in samples with relatively higher degrees of alteration as indicated by petrographic observations. Positive anomalies are a function of the behavior of the PGEs; they can be reproduced by Cr-spinel, and titanomagnetite crystallization, followed by titanomagnetite resorption during the final stages of crystallization. Our modeling shows that it is difficult to reproduce the PGE abundances by either depleted upper or even primitive mantle sources. Crustal contamination, while indicated at certain sites by the isotopic compositions of the basalts, appears to have had a minimal affect on the PGEs. The PGE abundances measured in the Kerguelen Plateau basalts are best modeled by melting a primitive mantle source to which was added up to 1% of outer core material, followed by fractional crystallization of the melt produced. This reproduces both the abundances and patterns of the PGEs in the Kerguelen Plateau basalts. An alternative model for outer core PGE abundances requires only 0.3% of outer core material to be mixed into the primitive mantle source. While our results are clearly model dependent, they indicate that an outer core component may be present in the Kerguelen plume source.
Resumo:
Major-, trace-, and rare-earth element analyses are presented from a suite of basaltic rocks from the basement of the Celebes Sea. The major elements and trace-elements were determined by X-ray fluorescence techniques, and the rare-earth elements were analyzed by instrumental neutron activation analysis. Compositionally the Celebes Sea basalts are very similar to typical normal mid-ocean ridge basalts, such as those described from the Indian Ocean triple junction. Petrogenetic modeling shows that all of the basalts analyzed can be formed by 10% to 20% partial melting of a light rare-earth element-depleted spinel lherzolite followed by fractional crystallization of mixtures of olivine, Plagioclase, and iron oxide. The Celebes Sea is interpreted as a fragment of the basement of the Jurassic Argo abyssal plain trapped during the Eocene to the north of Australia.
Resumo:
Conventional K-Ar and 40Ar/39Ar age data on altered basalts from DSDP Hole 192A on Meiji Guyot, Emperor Seamount chain, indicate a minimum age for the volcano of 61.9 ± 5.0 m.y. The K-Ar data are consistent with the early Maestrichtian date of the overlying sediments, but do not provide either a positive or negative test of the hypothesis that Meiji is older than Emperor volcanoes to the south. The most prominent alteration affecting the age measurements is potassium metasomatism, particularly of feldspar phenocrysts. The K-Ar apparent ages of feldspar separates from the Meiji basalts show that more than half of the potassium metasomatism occurred within the last 25 m.y. or so, and that if the potassium replacement rate has been constant, then the alteration of the Meiji basalts did not begin for 10 to 20 m.y. after the volcano formed.
Resumo:
Rare earth element (REE), major, and trace element abundances and relative fractionations in forty nodular cherts sampled by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) indicate that the REE composition of chert records the interplay between terrigenous sources and scavenging from the local seawater. Major and (non-REE) trace element ratios indicate that the aluminosilicate fraction within the chert is similar to NASC (North American Shale Composite), with average Pacific chert including ~7% NASC-like particles, Indian chert ~11% NASC, Atlantic chert ~17% NASC, and southern high latitude (SHL) chert 53% NASC. Using La as a proxy for sum REE, approximations of excessive La (the amount of La in excess of that supplied by the detrital aluminosilicate fraction) indicate that Pacific chert contains the greatest excessive La (85% of total La) and SHL chert the least (38% of total La). As shown by interelement associations, this excessive La is most likely an adsorbed component onto aluminosilicate and phosphatic phases. Accordingly, chert from the large Pacific Ocean, where deposition occurs relatively removed from significant terrigenous input, records a depositional REE signal dominated by adsorption of dissolved REEs from seawater. Pacific chert Ce/Ce* <<1 and normative La/Yb ~ 0.8-1, resulting from adsorption of local Ce-depleted seawater and preferential adsorption of LREEs from seawater (e.g., normative La/Yb ~0.4), which increases the normative La/Yb ratio recorded in chert. Chert from the Atlantic basin, a moderately sized ocean basin lined by passive margins and with more terrigenous input than the Pacific, records a mix of adsorptive and terrigenous REE signals, with moderately negative Ce anomalies and normative La/Yb ratios intermediate to those of the Pacific and those of terrigenous input. Chert from the SHL region is dominated by the large terrigenous input on the Antarctic passive margin, with inherited Ce/Ce* ~1 and inherited normative La/Yb values of ~1.2-1.4. Ce/Ce* does not vary with age, either throughout the entire data base or within a particular basin. Overall, Ce/Ce* does not correlate with P2O5 concentrations, even though phosphatic phases may be an important REE carrier.
Resumo:
Drilling of the distal Newfoundland margin at Ocean Drilling Program Site 1277 recovered part of the transition between exhumed sub-continental mantle lithosphere and normal mid-ocean-ridge basalt (N-MORB) volcanism perhaps related to the initiation of seafloor spreading, which may have occurred near the Aptian/Albian boundary, coincident with the final separation of subcontinental mantle lithosphere. Subcontinental mantle lithosphere was recovered near the crest of a basement high, the Mauzy Ridge. This ridge lies near magnetic Anomaly M1 and is inferred to be of Barremian age. The recovered section is dominated by serpentinized spinel harzburgite, with subordinate dunite and minor gabbroic intrusives, and it includes inferred high-temperature ductile shear zones. The serpentinite is capped by foliated gabbro cataclasite that is interpreted as the product of a major seafloor extensional detachment. The serpentinized harzburgite beneath is highly depleted subcontinental mantle lithosphere that was exhumed to create new seafloor within the ocean-continent transition zone. After inferred removal of overlying brittle crust, the detachment was eroded, producing multiple mass flows that were dominated by clasts of serpentinite and gabbro in a lithoclastic and calcareous matrix. Basaltic lavas were erupted spasmodically, mainly as sheet flows, with subordinate lava breccia, hyaloclastite, and possible pillow lava. The sedimentary-volcanic succession and the exhumed mantle lithosphere experienced later high-angle extensional fracturing and probably faulting. Extensional fissures opened incrementally and were filled with silt-sized carbonate, basalt-derived clastic sediment, and hyaloclastite, forming neptunian dykes and geopetal structures. Chemical analysis of representative basalts for major elements and trace elements were made using a high-precision, high-accuracy X-ray fluorescence method (utilizing increased count times) and by whole-rock inductively coupled plasma-mass spectrometry that yielded additional evidence for rare earth elements. The analyses indicate N-MORB to slightly enriched compositions. The MORB was produced by relatively high degree melting of a fertile mantle source that differed strongly from the cored serpentinized peridotites. The basalts exhibit a distinct negative Nb anomaly on MORB-normalized plots that can be explained by prior extraction of melt from upper mantle that had previously been affected by subduction, possibly during closure of the Iapetus or Rheic oceans. In the proposed interpretation, mantle lithosphere was exhumed to the seafloor and experienced mass wasting to form serpentinite-rich mass flows. The interbedded MORB records the beginning of a transition to "normal" seafloor spreading. This interpretation takes into account drilling results from the Iberia-Galicia margin and the Jurassic Alps-Apennines.