868 resultados para Net Heat flux
Resumo:
The flux of nitrogen (N) to coastal marine ecosystems is strongly correlated with the “net anthropogenic nitrogen inputs” (NANI) to the landscape across 154 watersheds, ranging in size from 16 km2 to 279 000 km2, in the US and Europe. When NANI values are greater than 1070 kg N km−2 yr−1, an average of 25% of the NANI is exported from those watersheds in rivers. Our analysis suggests a possible threshold at lower NANI levels, with a smaller fraction exported when NANI values are below 1070 kg N km−2 yr−1. Synthetic fertilizer is the largest component of NANI in many watersheds, but other inputs also contribute substantially to the N fluxes; in some regions, atmospheric deposition of N is the major component. The flux of N to coastal areas is controlled in part by climate, and a higher percentage of NANI is exported in rivers, from watersheds that have higher freshwater discharge.
Resumo:
The accumulation of phosphorus (P) in the bottom sediment of field drainage ditches poses a threat to the ecology both of the ditch water and downstream water courses. We investigated the amounts, forms and internal loading of sediment-bound P along two drainage ditches that regulate water levels in a basin fen (~ 200 ha) supporting a mixture of restored wetland and drained agricultural fields. Water levels in the Lady's Drove Rhyne are currently managed to enhance the biodiversity of the wetland (Catcott Lows Reserve — an area formerly cultivated for arable crop production); whereas, the East Ditch is managed to drain adjoining land that remains under arable and livestock production. Laboratory-based chemical fractionation schemes were used to characterise the forms and potential mobility of the sediment-bound P, whilst pore-water equilibrators were employed in situ to evaluate the diffusive flux of P through the sediment–water column, and to characterise the corresponding redox conditions. Along both ditches, sediment pore-water profiles indicated conditions ranging from weakly to very reducing conditions with increasing depth, and net fluxes of P from the sediment to overlying water. P flux values ranged from 0.33 to 1.30 mg m− 2 day− 1. Both the degree of P saturation (DPS) of the sediment and NaOH extractable (Fe/Al-bound) P correlated significantly (P < 0.05) with P flux. Both in the wetland and agricultural ditches, by far the highest values for P flux were recorded at sites closest to points of drainage water entry from the corresponding, adjoining land. Although the P flux data were obtained from only a single sampling event, this study highlights the contribution of historical as well as ongoing agricultural land use on the sustained elevated P status of ditch sediments in lowland catchments.
Resumo:
A theoretical model for predicting the behaviour of membrane distillation by incorporating mass and heat transfer equations has been used to find permeate fluxes, and has been validated experimentally. The model accurately predicts mass and heat transfer. The main work studied the effect of module design using a flat-plate module in laminar flow conditions. Areas of investigation included the use of channels across the membrane surface, decreasing the available membrane surface area, and widening the inlet and outlet channels. The work showed that widening the channels increased the flux. Increased flux was also obtained by the use of channels on the permeate side, though not on the feed side.
Resumo:
The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.
Resumo:
An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.
Resumo:
Observations of net ecosystem exchange (NEE) of carbon and its biophysical drivers have been collected at the AmeriFlux site in the Morgan-Monroe State Forest (MMSF) in Indiana, USA since 1998. Thus, this is one of the few deciduous forest sites in the world, where a decadal analysis on net ecosystem productivity (NEP) trends is possible. Despite the large interannual variability in NEP, the observations show a significant increase in forest productivity over the past 10 years (by an annual increment of about 10 g C m−2 yr−1). There is evidence that this trend can be explained by longer vegetative seasons, caused by extension of the vegetative activity in the fall. Both phenological and flux observations indicate that the vegetative season extended later in the fall with an increase in length of about 3 days yr−1 for the past 10 years. However, these changes are responsible for only 50% of the total annual gain in forest productivity in the past decade. A negative trend in air and soil temperature during the winter months may explain an equivalent increase in NEP through a decrease in ecosystem respiration.
Resumo:
Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly QH is related to the meteorological conditions. At shorter time scales the response of QH to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (Q*) coincide with greater differences between heat fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions.
Resumo:
[1] An eddy-permitting ¼° global ocean reanalysis based on the Operational Met Office FOAM data assimilation system has been run for 1989–2010 forced by ERA-Interim meteorology. Freshwater and heat transports are compared with published estimates globally and in each basin, with special focus on the Atlantic. The meridional transports agree with observations within errors at most locations, but where eddies are active the transports by the mean flow are nearly always in better agreement than the total transports. Eddy transports are down gradient and are enhanced relative to a free run. They may oppose or reinforce mean transports and provide 40–50% of the total transport near midlatitude fronts, where eddies with time scales <1 month provide up to 15%. Basin-scale freshwater convergences are calculated with the Arctic/Atlantic, Indian, and Pacific oceans north of 32°S, all implying net evaporation of 0.33 ± 0.04 Sv, 0.65 ± 0.07 Sv, and 0.09 ± 0.04 Sv, respectively, within the uncertainty of observations in the Atlantic and Pacific. The Indian is more evaporative and the Southern Ocean has more precipitation (1.07 Sv). Air-sea fluxes are modified by assimilation influencing turbulent heat fluxes and evaporation. Generally, surface and assimilation fluxes together match the meridional transports, indicating that the reanalysis is close to a steady state. Atlantic overturning and gyre transports are assessed with overturning freshwater transports southward at all latitudes. At 26°N eddy transports are negligible, overturning transport is 0.67 ± 0.19 Sv southward and gyre transport is 0.44 ± 0.17 Sv northward, with divergence between 26°N and the Bering Strait of 0.13 ± 0.23 Sv over 2004–2010.
Resumo:
Combining satellite data, atmospheric reanalyses and climate model simulations, variability in the net downward radiative flux imbalance at the top of Earth's atmosphere (N) is reconstructed and linked to recent climate change. Over the 1985-1999 period mean N (0.34 ± 0.67 Wm–2) is lower than for the 2000-2012 period (0.62 ± 0.43 Wm–2, uncertainties at 90% confidence level) despite the slower rate of surface temperature rise since 2000. While the precise magnitude of N remains uncertain, the reconstruction captures interannual variability which is dominated by the eruption of Mt. Pinatubo in 1991 and the El Niño Southern Oscillation. Monthly deseasonalized interannual variability in N generated by an ensemble of 9 climate model simulations using prescribed sea surface temperature and radiative forcings and from the satellite-based reconstruction is significantly correlated (r ∼ 0.6) over the 1985-2012 period.
Resumo:
Anthropogenic ocean heat uptake is a key factor in determining climate change and sea-level rise. There is considerable uncertainty in projections of freshwater forcing of the ocean, with the potential to influence ocean heat uptake. We investigatethis by adding either -0.1 Sv or +0.1 Sv freshwater to the Atlantic in global climate model simulations, simultaneously imposing an atmospheric CO2 increase. The resulting changes in the Atlantic meridional overturning circulation are roughly equal and opposite (±2Sv). The impact of the perturbation on ocean heat content is more complex, although it is relatively small (~5%) compared to the total anthropogenic heat uptake. Several competing processes either accelerate or retard warming at different depths. Whilst positive freshwater perturbations cause an overall heating of the Atlantic, negative perturbations produce insignificant net changes in heat content. The processes active in our model appear robust, although their net result is likely model- and experiment-dependent.
Resumo:
The ther mohaline exchange between the Atlantic and the Souther n Ocean is analyzed, using a dataset based on WOCE hydrographic data. It is shown that the salt and heat transports brought about by the South Atlantic subtropical gyre play an essential role in the Atlantic heat and salt budgets. It is found that on average the exported North Atlantic Deep W ater (NADW) is fresher than the retur n flows (basically composed of ther mocline and inter mediate water), indicating that the overtur ning circulation (OC) exports freshwater from the Atlantic. The sensitivity of the OC to interbasin fluxes of heat and salt is studied in a 2 D model, representing the Atlantic between 60 8 N and 30 8 S. The model is forced by mixed boundar y conditions at the sur face, and by realistic fluxes of heat and salt at its 30 8 S boundar y. The model circulation tur ns out to be ver y sensitive to net buoyancy fluxes through the sur face. Both net sur face cooling and net sur face saltening are sources of potential energy and impact positively on the circulation strength. The vertical distributions of the lateral fluxes tend to stabilize the stratification, and, as they extract potential energy from the system, tend to weaken the flow . These results imply that a change in the composition of the NADW retur n transports, whether by a change in the ratio ther mocline/inter mediate water , o r by a change in their ther mohaline characteristics, might influence the Atlantic OC considerably . It is also shown that the circulation is much more sensitive to changes in the shape of the lateral buoyancy flux than to changes in the shape of the sur face buoyancy flux, as the latter does not explicitly impact on the potential energy of the system. It is concluded that interocean fluxes of heat and salt are important for the strength and operation of the Atlantic ther mohaline circulation, and should be correctly represented in models that are used for climate sensitivity studies.
Resumo:
Tropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan-tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation-based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from X decoupling factor), especially at the wetter sites; (2) the resistance-based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature-based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia-wide evapotranspiration of 1370 mm yr(-1), but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr(-1)) is considered in discussion on the use of flux data to validate and interpolate models.
Resumo:
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar. In addition, we benchmark our codes by studying the heat transfer in magnetized compressible fluids and confirm the high rates of turbulent advection of heat obtained in an earlier study.