924 resultados para Negative frequency-dependent selection
Resumo:
The default mode network (DMN) has received growing attention in recent years because it seems to be involved in the neuropathology of psychiatric and neurodegenerative disorders such as autism, schizophrenia and Alzheimer Disease. It has been defined as a task negative network, beca use the activity of all its brain regions is increased during the resting state and suspended during external or goal directed tasks.
Resumo:
El óxido nitroso (N2O) es un potente gas de efecto invernadero (GHG) proveniente mayoritariamente de la fertilización nitrogenada de los suelos agrícolas. Identificar estrategias de manejo de la fertilización que reduzcan estas emisiones sin suponer un descenso de los rendimientos es vital tanto a nivel económico como medioambiental. Con ese propósito, en esta Tesis se han evaluado: (i) estrategias de manejo directo de la fertilización (inhibidores de la nitrificación/ureasa); y (ii) interacciones de los fertilizantes con (1) el manejo del agua, (2) residuos de cosecha y (3) diferentes especies de plantas. Para conseguirlo se llevaron a cabo meta-análisis, incubaciones de laboratorio, ensayos en invernadero y experimentos de campo. Los inhibidores de la nitrificación y de la actividad ureasa se proponen habitualmente como medidas para reducir las pérdidas de nitrógeno (N), por lo que su aplicación estaría asociada al uso eficiente del N por parte de los cultivos (NUE). Sin embargo, su efecto sobre los rendimientos es variable. Con el objetivo de evaluar en una primera fase su efectividad para incrementar el NUE y la productividad de los cultivos, se llevó a cabo un meta-análisis. Los inhibidores de la nitrificación dicyandiamide (DCD) y 3,4-dimetilepyrazol phosphate (DMPP) y el inhibidor de la ureasa N-(n-butyl) thiophosphoric triamide (NBPT) fueron seleccionados para el análisis ya que generalmente son considerados las mejores opciones disponibles comercialmente. Nuestros resultados mostraron que su uso puede ser recomendado con el fin de incrementar tanto el rendimiento del cultivo como el NUE (incremento medio del 7.5% y 12.9%, respectivamente). Sin embargo, se observó que su efectividad depende en gran medida de los factores medioambientales y de manejo de los estudios evaluados. Una mayor respuesta fue encontrada en suelos de textura gruesa, sistemas irrigados y/o en cultivos que reciben altas tasas de fertilizante nitrogenado. En suelos alcalinos (pH ≥ 8), el inhibidor de la ureasa NBPT produjo el mayor efecto. Dado que su uso representa un coste adicional para los agricultores, entender las mejores prácticas que permitan maximizar su efectividad es necesario para posteriormente realizar comparaciones efectivas con otras prácticas que incrementen la productividad de los cultivos y el NUE. En base a los resultados del meta-análisis, se seleccionó el NBPT como un inhibidor con gran potencial. Inicialmente desarrollado para reducir la volatilización de amoniaco (NH3), en los últimos años algunos investigadores han demostrado en estudios de campo un efecto mitigador de este inhibidor sobre las pérdidas de N2O provenientes de suelos fertilizados bajo condiciones de baja humedad del suelo. Dada la alta variabilidad de los experimentos de campo, donde la humedad del suelo cambia rápidamente, ha sido imposible entender mecanísticamente el potencial de los inhibidores de la ureasa (UIs) para reducir emisiones de N2O y su dependencia con respecto al porcentaje de poros llenos de agua del suelo (WFPS). Por lo tanto se realizó una incubación en laboratorio con el propósito de evaluar cuál es el principal mecanismo biótico tras las emisiones de N2O cuando se aplican UIs bajo diferentes condiciones de humedad del suelo (40, 60 y 80% WFPS), y para analizar hasta qué punto el WFPS regula el efecto del inhibidor sobre las emisiones de N2O. Un segundo UI (i.e. PPDA) fue utilizado para comparar el efecto del NBPT con el de otro inhibidor de la ureasa disponible comercialmente; esto nos permitió comprobar si el efecto de NBPT es específico de ese inhibidor o no. Las emisiones de N2O al 40% WFPS fueron despreciables, siendo significativamente más bajas que las de todos los tratamientos fertilizantes al 60 y 80% WFPS. Comparado con la urea sin inhibidor, NBPT+U redujo las emisiones de N2O al 60% WFPS pero no tuvo efecto al 80% WFPS. La aplicación de PPDA incrementó significativamente las emisiones con respecto a la urea al 80% WFPS mientras que no se encontró un efecto significativo al 60% WFPS. Al 80% WFPS la desnitrificación fue la principal fuente de las emisiones de N2O en todos los tratamientos mientras que al 60% tanto la nitrificación como la desnitrificación tuvieron un papel relevante. Estos resultados muestran que un correcto manejo del NBPT puede suponer una estrategia efectiva para mitigar las emisiones de N2O. Con el objetivo de trasladar nuestros resultados de los estudios previos a condiciones de campo reales, se desarrolló un experimento en el que se evaluó la efectividad del NBPT para reducir pérdidas de N y aumentar la productividad durante un cultivo de cebada (Hordeum vulgare L.) en secano Mediterráneo. Se determinó el rendimiento del cultivo, las concentraciones de N mineral del suelo, el carbono orgánico disuelto (DOC), el potencial de desnitrificación, y los flujos de NH3, N2O y óxido nítrico (NO). La adición del inhibidor redujo las emisiones de NH3 durante los 30 días posteriores a la aplicación de urea en un 58% y las emisiones netas de N2O y NO durante los 95 días posteriores a la aplicación de urea en un 86 y 88%, respectivamente. El uso de NBPT también incrementó el rendimiento en grano en un 5% y el consumo de N en un 6%, aunque ninguno de estos incrementos fue estadísticamente significativo. Bajo las condiciones experimentales dadas, estos resultados demuestran el potencial del inhibidor de la ureasa NBPT para mitigar las emisiones de NH3, N2O y NO provenientes de suelos arables fertilizados con urea, mediante la ralentización de la hidrólisis de la urea y posterior liberación de menores concentraciones de NH4 + a la capa superior del suelo. El riego por goteo combinado con la aplicación dividida de fertilizante nitrogenado disuelto en el agua de riego (i.e. fertirriego por goteo) se considera normalmente una práctica eficiente para el uso del agua y de los nutrientes. Algunos de los principales factores (WFPS, NH4 + y NO3 -) que regulan las emisiones de GHGs (i.e. N2O, CO2 y CH4) y NO pueden ser fácilmente manipulados por medio del fertirriego por goteo sin que se generen disminuciones del rendimiento. Con ese propósito se evaluaron opciones de manejo para reducir estas emisiones en un experimento de campo durante un cultivo de melón (Cucumis melo L.). Los tratamientos incluyeron distintas frecuencias de riego (semanal/diario) y tipos de fertilizantes nitrogenados (urea/nitrato cálcico) aplicados por fertirriego. Fertirrigar con urea en lugar de nitrato cálcico aumentó las emisiones de N2O y NO por un factor de 2.4 y 2.9, respectivamente (P < 0.005). El riego diario redujo las emisiones de NO un 42% (P < 0.005) pero aumentó las emisiones de CO2 un 21% (P < 0.05) comparado con el riego semanal. Analizando el Poder de Calentamiento global en base al rendimiento así como los factores de emisión del NO, concluimos que el fertirriego semanal con un fertilizante de tipo nítrico es la mejor opción para combinar productividad agronómica con sostenibilidad medioambiental en este tipo de agroecosistemas. Los suelos agrícolas en las áreas semiáridas Mediterráneas se caracterizan por su bajo contenido en materia orgánica y bajos niveles de fertilidad. La aplicación de residuos de cosecha y/o abonos es una alternativa sostenible y eficiente desde el punto de vista económico para superar este problema. Sin embargo, estas prácticas podrían inducir cambios importantes en las emisiones de N2O de estos agroecosistemas, con impactos adicionales en las emisiones de CO2. En este contexto se llevó a cabo un experimento de campo durante un cultivo de cebada (Hordeum vulgare L.) bajo condiciones Mediterráneas para evaluar el efecto de combinar residuos de cosecha de maíz con distintos inputs de fertilizantes nitrogenados (purín de cerdo y/o urea) en estas emisiones. La incorporación de rastrojo de maíz incrementó las emisiones de N2O durante el periodo experimental un 105%. Sin embargo, las emisiones de NO se redujeron significativamente en las parcelas enmendadas con rastrojo. La sustitución parcial de urea por purín de cerdo redujo las emisiones netas de N2O un 46 y 39%, con y sin incorporación de residuo de cosecha respectivamente. Las emisiones netas de NO se redujeron un 38 y un 17% para estos mismos tratamientos. El ratio molar DOC:NO3 - demostró predecir consistentemente las emisiones de N2O y NO. El efecto principal de la interacción entre el fertilizante nitrogenado y el rastrojo de maíz se dio a los 4-6 meses de su aplicación, generando un aumento del N2O y una disminución del NO. La sustitución de urea por purín de cerdo puede considerarse una buena estrategia de manejo dado que el uso de este residuo orgánico redujo las emisiones de óxidos de N. Los pastos de todo el mundo proveen numerosos servicios ecosistémicos pero también suponen una importante fuente de emisión de N2O, especialmente en respuesta a la deposición de N proveniente del ganado mientras pasta. Para explorar el papel de las plantas como mediadoras de estas emisiones, se analizó si las emisiones de N2O dependen de la riqueza en especies herbáceas y/o de la composición específica de especies, en ausencia y presencia de una deposición de orina. Las hipótesis fueron: 1) las emisiones de N2O tienen una relación negativa con la productividad de las plantas; 2) mezclas de cuatro especies generan menores emisiones que monocultivos (dado que su productividad será mayor); 3) las emisiones son menores en combinaciones de especies con distinta morfología radicular y alta biomasa de raíz; y 4) la identidad de las especies clave para reducir el N2O depende de si hay orina o no. Se establecieron monocultivos y mezclas de dos y cuatro especies comunes en pastos con rasgos funcionales divergentes: Lolium perenne L. (Lp), Festuca arundinacea Schreb. (Fa), Phleum pratense L. (Php) y Poa trivialis L. (Pt), y se cuantificaron las emisiones de N2O durante 42 días. No se encontró relación entre la riqueza en especies y las emisiones de N2O. Sin embargo, estas emisiones fueron significativamente menores en ciertas combinaciones de especies. En ausencia de orina, las comunidades de plantas Fa+Php actuaron como un sumidero de N2O, mientras que los monocultivos de estas especies constituyeron una fuente de N2O. Con aplicación de orina la comunidad Lp+Pt redujo (P < 0.001) las emisiones de N2O un 44% comparado con los monocultivos de Lp. Las reducciones de N2O encontradas en ciertas combinaciones de especies pudieron explicarse por una productividad total mayor y por una complementariedad en la morfología radicular. Este estudio muestra que la composición de especies herbáceas es un componente clave que define las emisiones de N2O de los ecosistemas de pasto. La selección de combinaciones de plantas específicas en base a la deposición de N esperada puede, por lo tanto, ser clave para la mitigación de las emisiones de N2O. ABSTRACT Nitrous oxide (N2O) is a potent greenhouse gas (GHG) directly linked to applications of nitrogen (N) fertilizers to agricultural soils. Identifying mitigation strategies for these emissions based on fertilizer management without incurring in yield penalties is of economic and environmental concern. With that aim, this Thesis evaluated: (i) the use of nitrification and urease inhibitors; and (ii) interactions of N fertilizers with (1) water management, (2) crop residues and (3) plant species richness/identity. Meta-analysis, laboratory incubations, greenhouse mesocosm and field experiments were carried out in order to understand and develop effective mitigation strategies. Nitrification and urease inhibitors are proposed as means to reduce N losses, thereby increasing crop nitrogen use efficiency (NUE). However, their effect on crop yield is variable. A meta-analysis was initially conducted to evaluate their effectiveness at increasing NUE and crop productivity. Commonly used nitrification inhibitors (dicyandiamide (DCD) and 3,4-dimethylepyrazole phosphate (DMPP)) and the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) were selected for analysis as they are generally considered the best available options. Our results show that their use can be recommended in order to increase both crop yields and NUE (grand mean increase of 7.5% and 12.9%, respectively). However, their effectiveness was dependent on the environmental and management factors of the studies evaluated. Larger responses were found in coarse-textured soils, irrigated systems and/or crops receiving high nitrogen fertilizer rates. In alkaline soils (pH ≥ 8), the urease inhibitor NBPT produced the largest effect size. Given that their use represents an additional cost for farmers, understanding the best management practices to maximize their effectiveness is paramount to allow effective comparison with other practices that increase crop productivity and NUE. Based on the meta-analysis results, NBPT was identified as a mitigation option with large potential. Urease inhibitors (UIs) have shown to promote high N use efficiency by reducing ammonia (NH3) volatilization. In the last few years, however, some field researches have shown an effective mitigation of UIs over N2O losses from fertilized soils under conditions of low soil moisture. Given the inherent high variability of field experiments where soil moisture content changes rapidly, it has been impossible to mechanistically understand the potential of UIs to reduce N2O emissions and its dependency on the soil water-filled pore space (WFPS). An incubation experiment was carried out aiming to assess what is the main biotic mechanism behind N2O emission when UIs are applied under different soil moisture conditions (40, 60 and 80% WFPS), and to analyze to what extent the soil WFPS regulates the effect of the inhibitor over N2O emissions. A second UI (i.e. PPDA) was also used aiming to compare the effect of NBPT with that of another commercially available urease inhibitor; this allowed us to see if the effect of NBPT was inhibitor-specific or not. The N2O emissions at 40% WFPS were almost negligible, being significantly lower from all fertilized treatments than that produced at 60 and 80% WFPS. Compared to urea alone, NBPT+U reduced the N2O emissions at 60% WFPS but had no effect at 80% WFPS. The application of PPDA significantly increased the emissions with respect to U at 80% WFPS whereas no significant effect was found at 60% WFPS. At 80% WFPS denitrification was the main source of N2O emissions for all treatments. Both nitrification and denitrification had a determinant role on these emissions at 60% WFPS. These results suggest that adequate management of the UI NBPT can provide, under certain soil conditions, an opportunity for N2O mitigation. We translated our previous results to realistic field conditions by means of a field experiment with a barley crop (Hordeum vulgare L.) under rainfed Mediterranean conditions in which we evaluated the effectiveness of NBPT to reduce N losses and increase crop yields. Crop yield, soil mineral N concentrations, dissolved organic carbon (DOC), denitrification potential, NH3, N2O and nitric oxide (NO) fluxes were measured during the growing season. The inclusion of the inhibitor reduced NH3 emissions in the 30 d following urea application by 58% and net N2O and NO emissions in the 95 d following urea application by 86 and 88%, respectively. NBPT addition also increased grain yield by 5% and N uptake by 6%, although neither increase was statistically significant. Under the experimental conditions presented here, these results demonstrate the potential of the urease inhibitor NBPT in abating NH3, N2O and NO emissions from arable soils fertilized with urea, slowing urea hydrolysis and releasing lower concentrations of NH4 + to the upper soil layer. Drip irrigation combined with split application of N fertilizer dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. Some of the main factors (WFPS, NH4 + and NO3 -) regulating the emissions of GHGs (i.e. N2O, carbon dioxide (CO2) and methane (CH4)) and NO can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations, N2O, NO, CH4, and CO2 fluxes were measured during the growing season. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO2 emissions by 21% (P < 0.05) compared with weekly irrigation. Based on yield-scaled Global Warming Potential as well as NO emission factors, we conclude that weekly fertigation with a NO3 --based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Agricultural soils in semiarid Mediterranean areas are characterized by low organic matter contents and low fertility levels. Application of crop residues and/or manures as amendments is a cost-effective and sustainable alternative to overcome this problem. However, these management practices may induce important changes in the nitrogen oxide emissions from these agroecosystems, with additional impacts on CO2 emissions. In this context, a field experiment was carried out with a barley (Hordeum vulgare L.) crop under Mediterranean conditions to evaluate the effect of combining maize (Zea mays L.) residues and N fertilizer inputs (organic and/or mineral) on these emissions. Crop yield and N uptake, soil mineral N concentrations, dissolved organic carbon (DOC), denitrification capacity, N2O, NO and CO2 fluxes were measured during the growing season. The incorporation of maize stover increased N2O emissions during the experimental period by c. 105 %. Conversely, NO emissions were significantly reduced in the plots amended with crop residues. The partial substitution of urea by pig slurry reduced net N2O emissions by 46 and 39 %, with and without the incorporation of crop residues respectively. Net emissions of NO were reduced 38 and 17 % for the same treatments. Molar DOC:NO3 - ratio was found to be a robust predictor of N2O and NO fluxes. The main effect of the interaction between crop residue and N fertilizer application occurred in the medium term (4-6 month after application), enhancing N2O emissions and decreasing NO emissions as consequence of residue incorporation. The substitution of urea by pig slurry can be considered a good management strategy since N2O and NO emissions were reduced by the use of the organic residue. Grassland ecosystems worldwide provide many important ecosystem services but they also function as a major source of N2O, especially in response to N deposition by grazing animals. In order to explore the role of plants as mediators of these emissions, we tested whether and how N2O emissions are dependent on grass species richness and/or specific grass species composition in the absence and presence of urine deposition. We hypothesized that: 1) N2O emissions relate negatively to plant productivity; 2) four-species mixtures have lower emissions than monocultures (as they are expected to be more productive); 3) emissions are lowest in combinations of species with diverging root morphology and high root biomass; and 4) the identity of the key species that reduce N2O emissions is dependent on urine deposition. We established monocultures and two- and four-species mixtures of common grass species with diverging functional traits: Lolium perenne L. (Lp), Festuca arundinacea Schreb. (Fa), Phleum pratense L. (Php) and Poa trivialis L. (Pt), and quantified N2O emissions for 42 days. We found no relation between plant species richness and N2O emissions. However, N2O emissions were significantly reduced in specific plant species combinations. In the absence of urine, plant communities of Fa+Php acted as a sink for N2O, whereas the monocultures of these species constituted a N2O source. With urine application Lp+Pt plant communities reduced (P < 0.001) N2O emissions by 44% compared to monocultures of Lp. Reductions in N2O emissions by species mixtures could be explained by total biomass productivity and by complementarity in root morphology. Our study shows that plant species composition is a key component underlying N2O emissions from grassland ecosystems. Selection of specific grass species combinations in the context of the expected nitrogen deposition regimes may therefore provide a key management practice for mitigation of N2O emissions.
Resumo:
El comercio electrónico ha experimentado un fuerte crecimiento en los últimos años, favorecido especialmente por el aumento de las tasas de penetración de Internet en todo el mundo. Sin embargo, no todos los países están evolucionando de la misma manera, con un espectro que va desde las naciones pioneras en desarrollo de tecnologías de la información y comunicaciones, que cuentan con una elevado porcentaje de internautas y de compradores online, hasta las rezagadas de rápida adopción en las que, pese a contar con una menor penetración de acceso, presentan una alta tasa de internautas compradores. Entre ambos extremos se encuentran países como España que, aunque alcanzó hace años una tasa considerable de penetración de usuarios de Internet, no ha conseguido una buena tasa de transformación de internautas en compradores. Pese a que el comercio electrónico ha experimentado importantes aumentos en los últimos años, sus tasas de crecimiento siguen estando por debajo de países con características socio-económicas similares. Para intentar conocer las razones que afectan a la adopción del comercio por parte de los compradores, la investigación científica del fenómeno ha empleado diferentes enfoques teóricos. De entre todos ellos ha destacado el uso de los modelos de adopción, proveniente de la literatura de adopción de sistemas de información en entornos organizativos. Estos modelos se basan en las percepciones de los compradores para determinar qué factores pueden predecir mejor la intención de compra y, en consecuencia, la conducta real de compra de los usuarios. Pese a que en los últimos años han proliferado los trabajos de investigación que aplican los modelos de adopción al comercio electrónico, casi todos tratan de validar sus hipótesis mediante el análisis de muestras de consumidores tratadas como un único conjunto, y del que se obtienen conclusiones generales. Sin embargo, desde el origen del marketing, y en especial a partir de la segunda mitad del siglo XIX, se considera que existen diferencias en el comportamiento de los consumidores, que pueden ser debidas a características demográficas, sociológicas o psicológicas. Estas diferencias se traducen en necesidades distintas, que sólo podrán ser satisfechas con una oferta adaptada por parte de los vendedores. Además, por contar el comercio electrónico con unas características particulares que lo diferencian del comercio tradicional –especialmente por la falta de contacto físico entre el comprador y el producto– a las diferencias en la adopción para cada consumidor se le añaden las diferencias derivadas del tipo de producto adquirido, que si bien habían sido consideradas en el canal físico, en el comercio electrónico cobran especial relevancia. A la vista de todo ello, el presente trabajo pretende abordar el estudio de los factores determinantes de la intención de compra y la conducta real de compra en comercio electrónico por parte del consumidor final español, teniendo en cuenta el tipo de segmento al que pertenezca dicho comprador y el tipo de producto considerado. Para ello, el trabajo contiene ocho apartados entre los que se encuentran cuatro bloques teóricos y tres bloques empíricos, además de las conclusiones. Estos bloques dan lugar a los siguientes ocho capítulos por orden de aparición en el trabajo: introducción, situación del comercio electrónico, modelos de adopción de tecnología, segmentación en comercio electrónico, diseño previo del trabajo empírico, diseño de la investigación, análisis de los resultados y conclusiones. El capítulo introductorio justifica la relevancia de la investigación, además de fijar los objetivos, la metodología y las fases seguidas para el desarrollo del trabajo. La justificación se complementa con el segundo capítulo, que cuenta con dos elementos principales: en primer lugar se define el concepto de comercio electrónico y se hace una breve retrospectiva desde sus orígenes hasta la situación actual en un contexto global; en segundo lugar, el análisis estudia la evolución del comercio electrónico en España, mostrando su desarrollo y situación presente a partir de sus principales indicadores. Este apartado no sólo permite conocer el contexto de la investigación, sino que además permite contrastar la relevancia de la muestra utilizada en el presente estudio con el perfil español respecto al comercio electrónico. Los capítulos tercero –modelos de adopción de tecnologías– y cuarto –segmentación en comercio electrónico– sientan las bases teóricas necesarias para abordar el estudio. En el capítulo tres se hace una revisión general de la literatura de modelos de adopción de tecnología y, en particular, de los modelos de adopción empleados en el ámbito del comercio electrónico. El resultado de dicha revisión deriva en la construcción de un modelo adaptado basado en los modelos UTAUT (Unified Theory of Acceptance and Use of Technology, Teoría unificada de la aceptación y el uso de la tecnología) y UTAUT2, combinado con dos factores específicos de adopción del comercio electrónico: el riesgo percibido y la confianza percibida. Por su parte, en el capítulo cuatro se revisan las metodologías de segmentación de clientes y productos empleadas en la literatura. De dicha revisión se obtienen un amplio conjunto de variables de las que finalmente se escogen nueve variables de clasificación que se consideran adecuadas tanto por su adaptación al contexto del comercio electrónico como por su adecuación a las características de la muestra empleada para validar el modelo. Las nueve variables se agrupan en tres conjuntos: variables de tipo socio-demográfico –género, edad, nivel de estudios, nivel de ingresos, tamaño de la unidad familiar y estado civil–, de comportamiento de compra – experiencia de compra por Internet y frecuencia de compra por Internet– y de tipo psicográfico –motivaciones de compra por Internet. La segunda parte del capítulo cuatro se dedica a la revisión de los criterios empleados en la literatura para la clasificación de los productos en el contexto del comercio electrónico. De dicha revisión se obtienen quince grupos de variables que pueden tomar un total de treinta y cuatro valores, lo que deriva en un elevado número de combinaciones posibles. Sin embargo, pese a haber sido utilizados en el contexto del comercio electrónico, no en todos los casos se ha comprobado la influencia de dichas variables respecto a la intención de compra o la conducta real de compra por Internet; por este motivo, y con el objetivo de definir una clasificación robusta y abordable de tipos de productos, en el capitulo cinco se lleva a cabo una validación de las variables de clasificación de productos mediante un experimento previo con 207 muestras. Seleccionando sólo aquellas variables objetivas que no dependan de la interpretación personal del consumidores y que determinen grupos significativamente distintos respecto a la intención y conducta de compra de los consumidores, se obtiene un modelo de dos variables que combinadas dan lugar a cuatro tipos de productos: bien digital, bien no digital, servicio digital y servicio no digital. Definidos el modelo de adopción y los criterios de segmentación de consumidores y productos, en el sexto capítulo se desarrolla el modelo completo de investigación formado por un conjunto de hipótesis obtenidas de la revisión de la literatura de los capítulos anteriores, en las que se definen las hipótesis de investigación con respecto a las influencias esperadas de las variables de segmentación sobre las relaciones del modelo de adopción. Este modelo confiere a la investigación un carácter social y de tipo fundamentalmente exploratorio, en el que en muchos casos ni siquiera se han encontrado evidencias empíricas previas que permitan el enunciado de hipótesis sobre la influencia de determinadas variables de segmentación. El capítulo seis contiene además la descripción del instrumento de medida empleado en la investigación, conformado por un total de 125 preguntas y sus correspondientes escalas de medida, así como la descripción de la muestra representativa empleada en la validación del modelo, compuesta por un grupo de 817 personas españolas o residentes en España. El capítulo siete constituye el núcleo del análisis empírico del trabajo de investigación, que se compone de dos elementos fundamentales. Primeramente se describen las técnicas estadísticas aplicadas para el estudio de los datos que, dada la complejidad del análisis, se dividen en tres grupos fundamentales: Método de mínimos cuadrados parciales (PLS, Partial Least Squares): herramienta estadística de análisis multivariante con capacidad de análisis predictivo que se emplea en la determinación de las relaciones estructurales de los modelos propuestos. Análisis multigrupo: conjunto de técnicas que permiten comparar los resultados obtenidos con el método PLS entre dos o más grupos derivados del uso de una o más variables de segmentación. En este caso se emplean cinco métodos de comparación, lo que permite asimismo comparar los rendimientos de cada uno de los métodos. Determinación de segmentos no identificados a priori: en el caso de algunas de las variables de segmentación no existe un criterio de clasificación definido a priori, sino que se obtiene a partir de la aplicación de técnicas estadísticas de clasificación. En este caso se emplean dos técnicas fundamentales: análisis de componentes principales –dado el elevado número de variables empleadas para la clasificación– y análisis clúster –del que se combina una técnica jerárquica que calcula el número óptimo de segmentos, con una técnica por etapas que es más eficiente en la clasificación, pero exige conocer el número de clústeres a priori. La aplicación de dichas técnicas estadísticas sobre los modelos resultantes de considerar los distintos criterios de segmentación, tanto de clientes como de productos, da lugar al análisis de un total de 128 modelos de adopción de comercio electrónico y 65 comparaciones multigrupo, cuyos resultados y principales consideraciones son elaboradas a lo largo del capítulo. Para concluir, el capítulo ocho recoge las conclusiones del trabajo divididas en cuatro partes diferenciadas. En primer lugar se examina el grado de alcance de los objetivos planteados al inicio de la investigación; después se desarrollan las principales contribuciones que este trabajo aporta tanto desde el punto de vista metodológico, como desde los punto de vista teórico y práctico; en tercer lugar, se profundiza en las conclusiones derivadas del estudio empírico, que se clasifican según los criterios de segmentación empleados, y que combinan resultados confirmatorios y exploratorios; por último, el trabajo recopila las principales limitaciones de la investigación, tanto de carácter teórico como empírico, así como aquellos aspectos que no habiendo podido plantearse dentro del contexto de este estudio, o como consecuencia de los resultados alcanzados, se presentan como líneas futuras de investigación. ABSTRACT Favoured by an increase of Internet penetration rates across the globe, electronic commerce has experienced a rapid growth over the last few years. Nevertheless, adoption of electronic commerce has differed from one country to another. On one hand, it has been observed that countries leading e-commerce adoption have a large percentage of Internet users as well as of online purchasers; on the other hand, other markets, despite having a low percentage of Internet users, show a high percentage of online buyers. Halfway between those two ends of the spectrum, we find countries such as Spain which, despite having moderately high Internet penetration rates and similar socio-economic characteristics as some of the leading countries, have failed to turn Internet users into active online buyers. Several theoretical approaches have been taken in an attempt to define the factors that influence the use of electronic commerce systems by customers. One of the betterknown frameworks to characterize adoption factors is the acceptance modelling theory, which is derived from the information systems adoption in organizational environments. These models are based on individual perceptions on which factors determine purchase intention, as a mean to explain users’ actual purchasing behaviour. Even though research on electronic commerce adoption models has increased in terms of volume and scope over the last years, the majority of studies validate their hypothesis by using a single sample of consumers from which they obtain general conclusions. Nevertheless, since the birth of marketing, and more specifically from the second half of the 19th century, differences in consumer behaviour owing to demographic, sociologic and psychological characteristics have also been taken into account. And such differences are generally translated into different needs that can only be satisfied when sellers adapt their offer to their target market. Electronic commerce has a number of features that makes it different when compared to traditional commerce; the best example of this is the lack of physical contact between customers and products, and between customers and vendors. Other than that, some differences that depend on the type of product may also play an important role in electronic commerce. From all the above, the present research aims to address the study of the main factors influencing purchase intention and actual purchase behaviour in electronic commerce by Spanish end-consumers, taking into consideration both the customer group to which they belong and the type of product being purchased. In order to achieve this goal, this Thesis is structured in eight chapters: four theoretical sections, three empirical blocks and a final section summarizing the conclusions derived from the research. The chapters are arranged in sequence as follows: introduction, current state of electronic commerce, technology adoption models, electronic commerce segmentation, preliminary design of the empirical work, research design, data analysis and results, and conclusions. The introductory chapter offers a detailed justification of the relevance of this study in the context of e-commerce adoption research; it also sets out the objectives, methodology and research stages. The second chapter further expands and complements the introductory chapter, focusing on two elements: the concept of electronic commerce and its evolution from a general point of view, and the evolution of electronic commerce in Spain and main indicators of adoption. This section is intended to allow the reader to understand the research context, and also to serve as a basis to justify the relevance and representativeness of the sample used in this study. Chapters three (technology acceptance models) and four (segmentation in electronic commerce) set the theoretical foundations for the study. Chapter 3 presents a thorough literature review of technology adoption modelling, focusing on previous studies on electronic commerce acceptance. As a result of the literature review, the research framework is built upon a model based on UTAUT (Unified Theory of Acceptance and Use of Technology) and its evolution, UTAUT2, including two specific electronic commerce adoption factors: perceived risk and perceived trust. Chapter 4 deals with client and product segmentation methodologies used by experts. From the literature review, a wide range of classification variables is studied, and a shortlist of nine classification variables has been selected for inclusion in the research. The criteria for variable selection were their adequacy to electronic commerce characteristics, as well as adequacy to the sample characteristics. The nine variables have been classified in three groups: socio-demographic (gender, age, education level, income, family size and relationship status), behavioural (experience in electronic commerce and frequency of purchase) and psychographic (online purchase motivations) variables. The second half of chapter 4 is devoted to a review of the product classification criteria in electronic commerce. The review has led to the identification of a final set of fifteen groups of variables, whose combination offered a total of thirty-four possible outputs. However, due to the lack of empirical evidence in the context of electronic commerce, further investigation on the validity of this set of product classifications was deemed necessary. For this reason, chapter 5 proposes an empirical study to test the different product classification variables with 207 samples. A selection of product classifications including only those variables that are objective, able to identify distinct groups and not dependent on consumers’ point of view, led to a final classification of products which consisted on two groups of variables for the final empirical study. The combination of these two groups gave rise to four types of products: digital and non-digital goods, and digital and non-digital services. Chapter six characterizes the research –social, exploratory research– and presents the final research model and research hypotheses. The exploratory nature of the research becomes patent in instances where no prior empirical evidence on the influence of certain segmentation variables was found. Chapter six also includes the description of the measurement instrument used in the research, consisting of a total of 125 questions –and the measurement scales associated to each of them– as well as the description of the sample used for model validation (consisting of 817 Spanish residents). Chapter 7 is the core of the empirical analysis performed to validate the research model, and it is divided into two separate parts: description of the statistical techniques used for data analysis, and actual data analysis and results. The first part is structured in three different blocks: Partial Least Squares Method (PLS): the multi-variable analysis is a statistical method used to determine structural relationships of models and their predictive validity; Multi-group analysis: a set of techniques that allow comparing the outcomes of PLS analysis between two or more groups, by using one or more segmentation variables. More specifically, five comparison methods were used, which additionally gives the opportunity to assess the efficiency of each method. Determination of a priori undefined segments: in some cases, classification criteria did not necessarily exist for some segmentation variables, such as customer motivations. In these cases, the application of statistical classification techniques is required. For this study, two main classification techniques were used sequentially: principal component factor analysis –in order to reduce the number of variables– and cluster analysis. The application of the statistical methods to the models derived from the inclusion of the various segmentation criteria –for both clients and products–, led to the analysis of 128 different electronic commerce adoption models and 65 multi group comparisons. Finally, chapter 8 summarizes the conclusions from the research, divided into four parts: first, an assessment of the degree of achievement of the different research objectives is offered; then, methodological, theoretical and practical implications of the research are drawn; this is followed by a discussion on the results from the empirical study –based on the segmentation criteria for the research–; fourth, and last, the main limitations of the research –both empirical and theoretical– as well as future avenues of research are detailed.
Resumo:
This paper deals with the dynamics of liquid bridges when subjected to an oscillatory microgravity field. The analysis has been performed by using a one-dimensional slice model, already used in liquid bridge problems, which allows to calculate not only the resonance frequencies of a wide range of such fluid configurations but also the dependence of the dynamic response of the liquid bridge on the frequency on the imposed perturbations. Theoretical results are compared with experimental ones obtained aboard Spacelab-Dl, the agreement between theoretical and experimental results being satisfactory
Resumo:
La presente Tesis constituye un avance en el conocimiento de los efectos de la variabilidad climática en los cultivos en la Península Ibérica (PI). Es bien conocido que la temperatura del océano, particularmente de la región tropical, es una de las variables más convenientes para ser utilizado como predictor climático. Los océanos son considerados como la principal fuente de almacenamiento de calor del planeta debido a la alta capacidad calorífica del agua. Cuando se libera esta energía, altera los regímenes globales de circulación atmosférica por mecanismos de teleconexión. Estos cambios en la circulación general de la atmósfera afectan a la temperatura, precipitación, humedad, viento, etc., a escala regional, los cuales afectan al crecimiento, desarrollo y rendimiento de los cultivos. Para el caso de Europa, esto implica que la variabilidad atmosférica en una región específica se asocia con la variabilidad de otras regiones adyacentes y/o remotas, como consecuencia Europa está siendo afectada por los patrones de circulaciones globales, que a su vez, se ven afectados por patrones oceánicos. El objetivo general de esta tesis es analizar la variabilidad del rendimiento de los cultivos y su relación con la variabilidad climática y teleconexiones, así como evaluar su predictibilidad. Además, esta Tesis tiene como objetivo establecer una metodología para estudiar la predictibilidad de las anomalías del rendimiento de los cultivos. El análisis se centra en trigo y maíz como referencia para otros cultivos de la PI, cultivos de invierno en secano y cultivos de verano en regadío respectivamente. Experimentos de simulación de cultivos utilizando una metodología en cadena de modelos (clima + cultivos) son diseñados para evaluar los impactos de los patrones de variabilidad climática en el rendimiento y su predictibilidad. La presente Tesis se estructura en dos partes: La primera se centra en el análisis de la variabilidad del clima y la segunda es una aplicación de predicción cuantitativa de cosechas. La primera parte está dividida en 3 capítulos y la segundo en un capitulo cubriendo los objetivos específicos del presente trabajo de investigación. Parte I. Análisis de variabilidad climática El primer capítulo muestra un análisis de la variabilidad del rendimiento potencial en una localidad como indicador bioclimático de las teleconexiones de El Niño con Europa, mostrando su importancia en la mejora de predictibilidad tanto en clima como en agricultura. Además, se presenta la metodología elegida para relacionar el rendimiento con las variables atmosféricas y oceánicas. El rendimiento de los cultivos es parcialmente determinado por la variabilidad climática atmosférica, que a su vez depende de los cambios en la temperatura de la superficie del mar (TSM). El Niño es el principal modo de variabilidad interanual de la TSM, y sus efectos se extienden en todo el mundo. Sin embargo, la predictibilidad de estos impactos es controversial, especialmente aquellos asociados con la variabilidad climática Europea, que se ha encontrado que es no estacionaria y no lineal. Este estudio mostró cómo el rendimiento potencial de los cultivos obtenidos a partir de datos de reanálisis y modelos de cultivos sirve como un índice alternativo y más eficaz de las teleconexiones de El Niño, ya que integra las no linealidades entre las variables climáticas en una única serie temporal. Las relaciones entre El Niño y las anomalías de rendimiento de los cultivos son más significativas que las contribuciones individuales de cada una de las variables atmosféricas utilizadas como entrada en el modelo de cultivo. Además, la no estacionariedad entre El Niño y la variabilidad climática europea se detectan con mayor claridad cuando se analiza la variabilidad de los rendimiento de los cultivos. La comprensión de esta relación permite una cierta predictibilidad hasta un año antes de la cosecha del cultivo. Esta predictibilidad no es constante, sino que depende tanto la modulación de la alta y baja frecuencia. En el segundo capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de verano en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de maíz en la PI para todo el siglo veinte, usando un modelo de cultivo calibrado en 5 localidades españolas y datos climáticos de reanálisis para obtener series temporales largas de rendimiento potencial. Este estudio evalúa el uso de datos de reanálisis para obtener series de rendimiento de cultivos que dependen solo del clima, y utilizar estos rendimientos para analizar la influencia de los patrones oceánicos y atmosféricos. Los resultados muestran una gran fiabilidad de los datos de reanálisis. La distribución espacial asociada a la primera componente principal de la variabilidad del rendimiento muestra un comportamiento similar en todos los lugares estudiados de la PI. Se observa una alta correlación lineal entre el índice de El Niño y el rendimiento, pero no es estacionaria en el tiempo. Sin embargo, la relación entre la temperatura del aire y el rendimiento se mantiene constante a lo largo del tiempo, siendo los meses de mayor influencia durante el período de llenado del grano. En cuanto a los patrones atmosféricos, el patrón Escandinavia presentó una influencia significativa en el rendimiento en PI. En el tercer capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de invierno en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de trigo en secano del Noreste (NE) de la PI. La variabilidad climática es el principal motor de los cambios en el crecimiento, desarrollo y rendimiento de los cultivos, especialmente en los sistemas de producción en secano. En la PI, los rendimientos de trigo son fuertemente dependientes de la cantidad de precipitación estacional y la distribución temporal de las mismas durante el periodo de crecimiento del cultivo. La principal fuente de variabilidad interanual de la precipitación en la PI es la Oscilación del Atlántico Norte (NAO), que se ha relacionado, en parte, con los cambios en la temperatura de la superficie del mar en el Pacífico Tropical (El Niño) y el Atlántico Tropical (TNA). La existencia de cierta predictibilidad nos ha animado a analizar la posible predicción de los rendimientos de trigo en la PI utilizando anomalías de TSM como predictor. Para ello, se ha utilizado un modelo de cultivo (calibrado en dos localidades del NE de la PI) y datos climáticos de reanálisis para obtener series temporales largas de rendimiento de trigo alcanzable y relacionar su variabilidad con anomalías de la TSM. Los resultados muestran que El Niño y la TNA influyen en el desarrollo y rendimiento del trigo en el NE de la PI, y estos impactos depende del estado concurrente de la NAO. Aunque la relación cultivo-TSM no es igual durante todo el periodo analizado, se puede explicar por un mecanismo eco-fisiológico estacionario. Durante la segunda mitad del siglo veinte, el calentamiento (enfriamiento) en la superficie del Atlántico tropical se asocia a una fase negativa (positiva) de la NAO, que ejerce una influencia positiva (negativa) en la temperatura mínima y precipitación durante el invierno y, por lo tanto, aumenta (disminuye) el rendimiento de trigo en la PI. En relación con El Niño, la correlación más alta se observó en el período 1981 -2001. En estas décadas, los altos (bajos) rendimientos se asocian con una transición El Niño - La Niña (La Niña - El Niño) o con eventos de El Niño (La Niña) que están finalizando. Para estos eventos, el patrón atmosférica asociada se asemeja a la NAO, que también influye directamente en la temperatura máxima y precipitación experimentadas por el cultivo durante la floración y llenado de grano. Los co- efectos de los dos patrones de teleconexión oceánicos ayudan a aumentar (disminuir) la precipitación y a disminuir (aumentar) la temperatura máxima en PI, por lo tanto el rendimiento de trigo aumenta (disminuye). Parte II. Predicción de cultivos. En el último capítulo se analiza los beneficios potenciales del uso de predicciones climáticas estacionales (por ejemplo de precipitación) en las predicciones de rendimientos de trigo y maíz, y explora métodos para aplicar dichos pronósticos climáticos en modelos de cultivo. Las predicciones climáticas estacionales tienen un gran potencial en las predicciones de cultivos, contribuyendo de esta manera a una mayor eficiencia de la gestión agrícola, seguridad alimentaria y de subsistencia. Los pronósticos climáticos se expresan en diferentes formas, sin embargo todos ellos son probabilísticos. Para ello, se evalúan y aplican dos métodos para desagregar las predicciones climáticas estacionales en datos diarios: 1) un generador climático estocástico condicionado (predictWTD) y 2) un simple re-muestreador basado en las probabilidades del pronóstico (FResampler1). Los dos métodos se evaluaron en un caso de estudio en el que se analizaron los impactos de tres escenarios de predicciones de precipitación estacional (predicción seco, medio y lluvioso) en el rendimiento de trigo en secano, sobre las necesidades de riego y rendimiento de maíz en la PI. Además, se estimó el margen bruto y los riesgos de la producción asociada con las predicciones de precipitación estacional extremas (seca y lluviosa). Los métodos predWTD y FResampler1 usados para desagregar los pronósticos de precipitación estacional en datos diarios, que serán usados como inputs en los modelos de cultivos, proporcionan una predicción comparable. Por lo tanto, ambos métodos parecen opciones factibles/viables para la vinculación de los pronósticos estacionales con modelos de simulación de cultivos para establecer predicciones de rendimiento o las necesidades de riego en el caso de maíz. El análisis del impacto en el margen bruto de los precios del grano de los dos cultivos (trigo y maíz) y el coste de riego (maíz) sugieren que la combinación de los precios de mercado previstos y la predicción climática estacional pueden ser una buena herramienta en la toma de decisiones de los agricultores, especialmente en predicciones secas y/o localidades con baja precipitación anual. Estos métodos permiten cuantificar los beneficios y riesgos de los agricultores ante una predicción climática estacional en la PI. Por lo tanto, seríamos capaces de establecer sistemas de alerta temprana y diseñar estrategias de adaptación del manejo del cultivo para aprovechar las condiciones favorables o reducir los efectos de condiciones adversas. La utilidad potencial de esta Tesis es la aplicación de las relaciones encontradas para predicción de cosechas de la próxima campaña agrícola. Una correcta predicción de los rendimientos podría ayudar a los agricultores a planear con antelación sus prácticas agronómicas y todos los demás aspectos relacionados con el manejo de los cultivos. Esta metodología se puede utilizar también para la predicción de las tendencias futuras de la variabilidad del rendimiento en la PI. Tanto los sectores públicos (mejora de la planificación agrícola) como privados (agricultores, compañías de seguros agrarios) pueden beneficiarse de esta mejora en la predicción de cosechas. ABSTRACT The present thesis constitutes a step forward in advancing of knowledge of the effects of climate variability on crops in the Iberian Peninsula (IP). It is well known that ocean temperature, particularly the tropical ocean, is one of the most convenient variables to be used as climate predictor. Oceans are considered as the principal heat storage of the planet due to the high heat capacity of water. When this energy is released, it alters the global atmospheric circulation regimes by teleconnection1 mechanisms. These changes in the general circulation of the atmosphere affect the regional temperature, precipitation, moisture, wind, etc., and those influence crop growth, development and yield. For the case of Europe, this implies that the atmospheric variability in a specific region is associated with the variability of others adjacent and/or remote regions as a consequence of Europe being affected by global circulations patterns which, in turn, are affected by oceanic patterns. The general objective of this Thesis is to analyze the variability of crop yields at climate time scales and its relation to the climate variability and teleconnections, as well as to evaluate their predictability. Moreover, this Thesis aims to establish a methodology to study the predictability of crop yield anomalies. The analysis focuses on wheat and maize as a reference crops for other field crops in the IP, for winter rainfed crops and summer irrigated crops respectively. Crop simulation experiments using a model chain methodology (climate + crop) are designed to evaluate the impacts of climate variability patterns on yield and its predictability. The present Thesis is structured in two parts. The first part is focused on the climate variability analyses, and the second part is an application of the quantitative crop forecasting for years that fulfill specific conditions identified in the first part. This Thesis is divided into 4 chapters, covering the specific objectives of the present research work. Part I. Climate variability analyses The first chapter shows an analysis of potential yield variability in one location, as a bioclimatic indicator of the El Niño teleconnections with Europe, putting forward its importance for improving predictability in both climate and agriculture. It also presents the chosen methodology to relate yield with atmospheric and oceanic variables. Crop yield is partially determined by atmospheric climate variability, which in turn depends on changes in the sea surface temperature (SST). El Niño is the leading mode of SST interannual variability, and its impacts extend worldwide. Nevertheless, the predictability of these impacts is controversial, especially those associated with European climate variability, which have been found to be non-stationary and non-linear. The study showed how potential2 crop yield obtained from reanalysis data and crop models serves as an alternative and more effective index of El Niño teleconnections because it integrates the nonlinearities between the climate variables in a unique time series. The relationships between El Niño and crop yield anomalies are more significant than the individual contributions of each of the atmospheric variables used as input in the crop model. Additionally, the non-stationarities between El Niño and European climate variability are more clearly detected when analyzing crop-yield variability. The understanding of this relationship allows for some predictability up to one year before the crop is harvested. This predictability is not constant, but depends on both high and low frequency modulation. The second chapter identifies the oceanic and atmospheric patterns of climate variability affecting summer cropping systems in the IP. Moreover, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of simulated crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The third chapter identifies the oceanic and atmospheric patterns of climate variability affecting winter cropping systems in the IP. Also, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of rainfed wheat yield variability in IP. Climate variability is the main driver of changes in crop growth, development and yield, especially for rainfed production systems. In IP, wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. The major source of precipitation interannual variability in IP is the North Atlantic Oscillation (NAO) which has been related in part with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) sea surface temperature (SST). The existence of some predictability has encouraged us to analyze the possible predictability of the wheat yield in the IP using SSTs anomalies as predictor. For this purpose, a crop model with a site specific calibration for the Northeast of IP and reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that El Niño and TNA influence rainfed wheat development and yield in IP and these impacts depend on the concurrent state of the NAO. Although crop-SST relationships do not equally hold on during the whole analyzed period, they can be explained by an understood and stationary ecophysiological mechanism. During the second half of the twenty century, the positive (negative) TNA index is associated to a negative (positive) phase of NAO, which exerts a positive (negative) influence on minimum temperatures (Tmin) and precipitation (Prec) during winter and, thus, yield increases (decreases) in IP. In relation to El Niño, the highest correlation takes place in the period 1981-2001. For these decades, high (low) yields are associated with an El Niño to La Niña (La Niña to El Niño) transitions or to El Niño events finishing. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures (Tmax) and precipitation experienced by the crop during flowering and grain filling. The co-effects of the two teleconnection patterns help to increase (decrease) the rainfall and decrease (increase) Tmax in IP, thus on increase (decrease) wheat yield. Part II. Crop forecasting The last chapter analyses the potential benefits for wheat and maize yields prediction from using seasonal climate forecasts (precipitation), and explores methods to apply such a climate forecast to crop models. Seasonal climate prediction has significant potential to contribute to the efficiency of agricultural management, and to food and livelihood security. Climate forecasts come in different forms, but probabilistic. For this purpose, two methods were evaluated and applied for disaggregating seasonal climate forecast into daily weather realizations: 1) a conditioned stochastic weather generator (predictWTD) and 2) a simple forecast probability resampler (FResampler1). The two methods were evaluated in a case study where the impacts of three scenarios of seasonal rainfall forecasts on rainfed wheat yield, on irrigation requirements and yields of maize in IP were analyzed. In addition, we estimated the economic margins and production risks associated with extreme scenarios of seasonal rainfall forecasts (dry and wet). The predWTD and FResampler1 methods used for disaggregating seasonal rainfall forecast into daily data needed by the crop simulation models provided comparable predictability. Therefore both methods seem feasible options for linking seasonal forecasts with crop simulation models for establishing yield forecasts or irrigation water requirements. The analysis of the impact on gross margin of grain prices for both crops and maize irrigation costs suggests the combination of market prices expected and the seasonal climate forecast can be a good tool in farmer’s decision-making, especially on dry forecast and/or in locations with low annual precipitation. These methodologies would allow quantifying the benefits and risks of a seasonal weather forecast to farmers in IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. The potential usefulness of this Thesis is to apply the relationships found to crop forecasting on the next cropping season, suggesting opportunity time windows for the prediction. The methodology can be used as well for the prediction of future trends of IP yield variability. Both public (improvement of agricultural planning) and private (decision support to farmers, insurance companies) sectors may benefit from such an improvement of crop forecasting.
Resumo:
Activation of the transcription factor nuclear factor kappa B (NF-κB) is controlled by proteolysis of its inhibitory subunit (IκB) via the ubiquitin-proteasome pathway. Signal-induced phosphorylation of IκBα by a large multisubunit complex containing IκB kinases is a prerequisite for ubiquitination. Here, we show that FWD1 (a mouse homologue of Slimb/βTrCP), a member of the F-box/WD40-repeat proteins, is associated specifically with IκBα only when IκBα is phosphorylated. The introduction of FWD1 into cells significantly promotes ubiquitination and degradation of IκBα in concert with IκB kinases, resulting in nuclear translocation of NF-κB. In addition, FWD1 strikingly evoked the ubiquitination of IκBα in the in vitro system. In contrast, a dominant-negative form of FWD1 inhibits the ubiquitination, leading to stabilization of IκBα. These results suggest that the substrate-specific degradation of IκBα is mediated by a Skp1/Cull 1/F-box protein (SCF) FWD1 ubiquitin-ligase complex and that FWD1 serves as an intracellular receptor for phosphorylated IκBα. Skp1/Cullin/F-box protein FWD1 might play a critical role in transcriptional regulation of NF-κB through control of IκB protein stability.
Resumo:
Deficiency in genes involved in DNA mismatch repair increases susceptibility to cancer, particularly of the colorectal epithelium. Using Msh2 null mice, we demonstrate that this genetic defect renders normal intestinal epithelial cells susceptible to mutation in vivo at the Dlb-1 locus. Compared with wild-type mice, Msh2-deficient animals had higher basal levels of mutation and were more sensitive to the mutagenic effects of temozolomide. Experiments using Msh2-deficient cells in vitro suggest that an element of this effect is attributable to increased clonogenicity. Indeed, we show that Msh2 plays a role in the in vivo initiation of apoptosis after treatment with temozolomide, N-methyl-N′-nitro-N-nitrosoguanidine, and cisplatin. This was not influenced by the in vivo depletion of O6-alkylguanine-DNA-alkyltransferase after administration of O6-benzylguanine . By analyzing mice mutant for both Msh2 and p53, we found that the Msh2-dependent apoptotic response was primarily mediated through a p53-dependent pathway. Msh2 also was required to signal delayed p53-independent death. Taken together, these studies characterize an in vivo Msh2-dependent apoptotic response to methylating agents and raise the possibility that Msh2 deficiency may predispose to malignancy not only through failed repair of mismatch DNA lesions but also through the failure to engage apoptosis.
Resumo:
The possibility that bacteria may have evolved strategies to overcome host cell apoptosis was explored by using Rickettsia rickettsii, an obligate intracellular Gram-negative bacteria that is the etiologic agent of Rocky Mountain spotted fever. The vascular endothelial cell, the primary target cell during in vivo infection, exhibits no evidence of apoptosis during natural infection and is maintained for a sufficient time to allow replication and cell-to-cell spread prior to eventual death due to necrotic damage. Prior work in our laboratory demonstrated that R. rickettsii infection activates the transcription factor NF-κB and alters expression of several genes under its control. However, when R. rickettsii-induced activation of NF-κB was inhibited, apoptosis of infected but not uninfected endothelial cells rapidly ensued. In addition, human embryonic fibroblasts stably transfected with a superrepressor mutant inhibitory subunit IκB that rendered NF-κB inactivatable also underwent apoptosis when infected, whereas infected wild-type human embryonic fibroblasts survived. R. rickettsii, therefore, appeared to inhibit host cell apoptosis via a mechanism dependent on NF-κB activation. Apoptotic nuclear changes correlated with presence of intracellular organisms and thus this previously unrecognized proapoptotic signal, masked by concomitant NF-κB activation, likely required intracellular infection. Our studies demonstrate that a bacterial organism can exert an antiapoptotic effect, thus modulating the host cell’s apoptotic response to its own advantage by potentially allowing the host cell to remain as a site of infection.
Resumo:
Developmental commitment involves activation of lineage-specific genes, stabilization of a lineage-specific gene expression program, and permanent inhibition of inappropriate characteristics. To determine how these processes are coordinated in early T cell development, the expression of T and B lineage-specific genes was assessed in staged subsets of immature thymocytes. T lineage characteristics are acquired sequentially, with germ-line T cell antigen receptor-β transcripts detected very early, followed by CD3ɛ and terminal deoxynucleotidyl transferase, then pTα, and finally RAG1. Only RAG1 expression coincides with commitment. Thus, much T lineage gene expression precedes commitment and does not depend on it. Early in the course of commitment to the T lineage, thymocytes lose the ability to develop into B cells. To understand how this occurs, we also examined expression of well defined B lineage-specific genes. Although λ5 and Ig-α are not expressed, the μ0 and Iμ transcripts from the unrearranged IgH locus are expressed early, in distinct patterns, then repressed just before RAG1 expression. By contrast, RNA encoding the B cell receptor component Ig-β was found to be transcribed in all immature thymocyte subpopulations and throughout most thymocyte differentiation. Ig-β expression is down-regulated only during positive selection of CD4+CD8– cells. Thus several key participants in the B cell developmental program are expressed in non-B lineage-committed cells, and one is maintained even through commitment to an alternative lineage, and repressed only after extensive T lineage differentiation. The results show that transcriptional activation of “lymphocyte-specific” genes can occur in uncommitted precursors, and that T lineage commitment is a composite of distinct positive and negative regulatory events.
Resumo:
This study demonstrates that endogenously produced interferon γ (IFN-γ) forms the basis of a tumor surveillance system that controls development of both chemically induced and spontaneously arising tumors in mice. Compared with wild-type mice, mice lacking sensitivity to either IFN-γ (i.e., IFN-γ receptor-deficient mice) or all IFN family members (i.e., Stat1-deficient mice) developed tumors more rapidly and with greater frequency when challenged with different doses of the chemical carcinogen methylcholanthrene. In addition, IFN-γ-insensitive mice developed tumors more rapidly than wild-type mice when bred onto a background deficient in the p53 tumor-suppressor gene. IFN-γ-insensitive p53−/− mice also developed a broader spectrum of tumors compared with mice lacking p53 alone. Using tumor cells derived from methylcholanthrene-treated IFN-γ-insensitive mice, we found IFN-γ’s actions to be mediated at least partly through its direct effects on the tumor cell leading to enhanced tumor cell immunogenicity. The importance and generality of this system is evidenced by the finding that certain types of human tumors become selectively unresponsive to IFN-γ. Thus, IFN-γ forms the basis of an extrinsic tumor-suppressor mechanism in immunocompetent hosts.
Resumo:
β2 integrin molecules are involved in a multitude of cellular events, including adhesion, migration, and cellular activation. Here, we studied the influence of β2 integrins on interleukin-2 (IL-2)-mediated signal transduction in human CD4+ T cell lines obtained from healthy donors and a leukocyte adhesion deficiency (LAD) patient. We show that IL-2 induces tyrosine phosphorylation of a 125-kDa protein and homotypic adhesion in β2 integrin (CD18)-positive but not in β2-integrin-negative T cells. EDTA, an inhibitor of integrin adhesion, blocks IL-2-induced tyrosine phosphorylation of the 125-kDa protein but not other proteins in β2-integrin-positive T cells. Likewise, a β2 integrin (CD18) antibody selectively inhibits induction of the 125-kDa phosphotyrosine protein, whereas cytokine-mediated tyrosine phosphorylation of other proteins is largely unaffected. Immunoprecipitation experiments indicate that the IL-2-induced 125-kDa phosphotyrosine protein is the focal adhesion kinase-related protein B (fakB). Thus, IL-2 induces strong tyrosine phosphorylation of fakB in β2-integrin-positive but not in β2-integrin-negative T cells, and CD18 mAb selectively blocks IL-2-induced fakB-tyrosine phosphorylation in β2-integrin-positive T cells. In parallel experiments, IL-2 does not induce or augment tyrosine phosphorylation of p125FAK. In conclusion, our data indicate that IL-2 induces β2-integrin-dependent signal transduction events involving the tyrosine kinase substrate fakB.
Resumo:
Classical quorum-sensing (autoinduction) regulation, as exemplified by the lux system of Vibrio fischeri, requires N-acyl homoserine lactone (AHL) signals to stimulate cognate transcriptional activators for the cell density-dependent expression of specific target gene systems. For Pantoea stewartii subsp. stewartii, a bacterial pathogen of sweet corn and maize, the extracellular polysaccharide (EPS) stewartan is a major virulence factor, and its production is controlled by quorum sensing in a population density-dependent manner. Two genes, esaI and esaR, encode essential regulatory proteins for quorum sensing. EsaI is the AHL signal synthase, and EsaR is the cognate gene regulator. esaI, ΔesaR, and ΔesaI-esaR mutations were constructed to establish the regulatory role of EsaR. We report here that strains containing an esaR mutation produce high levels of EPS independently of cell density and in the absence of the AHL signal. Our data indicate that quorum-sensing regulation in P. s. subsp. stewartii, in contrast to most other described systems, uses EsaR to repress EPS synthesis at low cell density, and that derepression requires micromolar amounts of AHL. In addition, derepressed esaR strains, which synthesize EPS constitutively at low cell densities, were significantly less virulent than the wild-type parent. This finding suggests that quorum sensing in P. s. subsp. stewartii may be a mechanism to delay the expression of EPS during the early stages of infection so that it does not interfere with other mechanisms of pathogenesis.
Resumo:
In filamentous fungi, het loci (for heterokaryon incompatibility) are believed to regulate self/nonself-recognition during vegetative growth. As filamentous fungi grow, hyphal fusion occurs within an individual colony to form a network. Hyphal fusion can occur also between different individuals to form a heterokaryon, in which genetically distinct nuclei occupy a common cytoplasm. However, heterokaryotic cells are viable only if the individuals involved have identical alleles at all het loci. One het locus, het-c, has been characterized at the molecular level in Neurospora crassa and encodes a glycine-rich protein. In an effort to understand the role of this locus in filamentous fungi, we chose to study its evolution by analyzing het-c sequence variability in species within Neurospora and related genera. We determined that the het-c locus was polymorphic in a field population of N. crassa with close to equal frequency of each of the three allelic types. Different species and even genera within the Sordariaceae shared het-c polymorphisms, indicating that these polymorphisms originated in an ancestral species. Finally, an analysis of the het-c specificity region shows a high occurrence of nonsynonymous substitution. The persistence of allelic lineages, the nearly equal allelic distribution within populations, and the high frequency of nonsynonymous substitutions in the het-c specificity region suggest that balancing selection has operated to maintain allelic diversity at het-c. Het-c shares this particular evolutionary characteristic of departing from neutrality with other self/nonself-recognition systems such as major histocompatibility complex loci in mammals and the S (self-incompatibility) locus in angiosperms.
Resumo:
Bordetella pertussis secretes a calmodulin-activated adenylate cyclase toxin, CyaA, that is able to deliver its N-terminal catalytic domain (400-aa residues) into the cytosol of eukaryotic target cells, directly through the cytoplasmic membrane. We have previously shown that CyaA can be used as a vehicle to deliver T cell epitopes, inserted within the catalytic domain of the toxin, into antigen-presenting cells and can trigger specific class I-restricted CD8+ cytotoxic T cell responses in vivo. Here, we constructed a series of recombinant toxins harboring at the same insertion site various peptide sequences of 11–25 amino acids, corresponding to defined CD8+ T cell epitopes and differing in the charge of the inserted sequence. We show that inserted peptide sequences containing net negative charges (−1 or −2) decreased or completely blocked (charge of −4) the internalization of the toxin into target cells in vitro and abolished the induction of cytotoxic T cell responses in vivo. The blocking of translocation due to the inserted acidic sequences can be relieved by appropriate mutations in the flanking region of CyaA that counterbalance the inserted charges. Our data indicate that (i) the electrostatic charge of the peptides inserted within the catalytic domain of CyaA is critical for its translocation into eukaryotic cells and (ii) the delivery of T cell epitopes into the cytosol of antigen-presenting cells by recombinant CyaA toxins is essential for the in vivo stimulation of specific cytotoxic T cells. These findings will help to engineer improved recombinant CyaA vectors able to stimulate more efficiently cellular immunity.
Resumo:
Using systematic evolution of ligands by exponential enrichment (SELEX), an RNA molecule was isolated that displays a 1,000-fold higher affinity for guanosine residues that carry an N-7 methyl group than for nonmethylated guanosine residues. The methylated guanosine residue closely resembles the 5′ terminal cap structure present on all eukaryotic mRNA molecules. The cap-binding RNA specifically inhibited the translation of capped but not uncapped mRNA molecules in cell-free lysates prepared from either human HeLa cells or from Saccharomyces cerevisiae. These findings indicate that the cap-binding RNA will also be useful in studies of other cap-dependent processes such as pre-mRNA splicing and nucleocytoplasmic mRNA transport.