923 resultados para Negative dimensional integration method (NDIM)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gas dynamics is defined, and a scheme, based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem, and incorporates the technique of operator splitting. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. An extension to the two-dimensional equations with source terms is included. The scheme is applied to the one-dimensional problems of a breaking dam and reflection of a bore, and in each case the approximate solution is compared to the exact solution of ideal fluid flow. The scheme is also applied to a problem of stationary bore generation in a channel of variable cross-section. Finally, the scheme is applied to two other dam-break problems, this time in two dimensions with one having cylindrical symmetry. Each approximate solution compares well with those given by other authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solutions of a two-dimensional dam break problem are presented for two tailwater/reservoir height ratios. The numerical scheme used is an extension of one previously given by the author [J. Hyd. Res. 26(3), 293–306 (1988)], and is based on numerical characteristic decomposition. Thus approximate solutions are obtained via linearised problems, and the method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids non-physical, spurious oscillations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we develop an asymptotic scheme to approximate the trapped mode solutions to the time harmonic wave equation in a three-dimensional waveguide with a smooth but otherwise arbitrarily shaped cross section and a single, slowly varying `bulge', symmetric in the longitudinal direction. Extending the work in Biggs (2012), we first employ a WKBJ-type ansatz to identify the possible quasi-mode solutions which propagate only in the thicker region, and hence find a finite cut-on region of oscillatory behaviour and asymptotic decay elsewhere. The WKBJ expansions are used to identify a turning point between the cut-on and cut-on regions. We note that the expansions are nonuniform in an interior layer centred on this point, and we use the method of matched asymptotic expansions to connect the cut-on and cut-on regions within this layer. The behaviour of the expansions within the interior layer then motivates the construction of a uniformly valid asymptotic expansion. Finally, we use this expansion and the symmetry of the waveguide around the longitudinal centre, x = 0, to extract trapped mode wavenumbers, which are compared with those found using a numerical scheme and seen to be extremely accurate, even to relatively large values of the small parameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correlated k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models and involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. The fluxes and heating rates for each band may then be computed by discretizing the reordered spectrum into of order 10 quadrature points per major gas and performing a monochromatic radiation calculation for each point. In this presentation it is shown that for clear-sky longwave calculations, sufficient accuracy for most applications can be achieved without the need for bands: reordering may be performed on the entire longwave spectrum. The resulting full-spectrum correlated k (FSCK) method requires significantly fewer monochromatic calculations than standard CKD to achieve a given accuracy. The concept is first demonstrated by comparing with line-by-line calculations for an atmosphere containing only water vapor, in which it is shown that the accuracy of heating-rate calculations improves approximately in proportion to the square of the number of quadrature points. For more than around 20 points, the root-mean-squared error flattens out at around 0.015 K/day due to the imperfect rank correlation of absorption spectra at different pressures in the profile. The spectral overlap of m different gases is treated by considering an m-dimensional hypercube where each axis corresponds to the reordered spectrum of one of the gases. This hypercube is then divided up into a number of volumes, each approximated by a single quadrature point, such that the total number of quadrature points is slightly fewer than the sum of the number that would be required to treat each of the gases separately. The gaseous absorptions for each quadrature point are optimized such that they minimize a cost function expressing the deviation of the heating rates and fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This approach is validated for atmospheres containing water vapor, carbon dioxide, and ozone, in which it is found that in the troposphere and most of the stratosphere, heating-rate errors of less than 0.2 K/day can be achieved using a total of 23 quadrature points, decreasing to less than 0.1 K/day for 32 quadrature points. It would be relatively straightforward to extend the method to include other gases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed where appropriate. The relative size of the noise variance to the observed variance provides a measure of the confidence in the retrieval. Comparison with in situ dissipation rates derived from the balloon-borne sonic anemometer reveal that this particular Doppler lidar is capable of retrieving dissipation rates over a range of at least three orders of magnitude. This method is most suitable for retrieval of dissipation rates within the convective well-mixed boundary layer where the scales of motion that the Doppler lidar probes remain well within the inertial subrange. Caution must be applied when estimating dissipation rates in more quiescent conditions. For the particular Doppler lidar described here, the selection of suitably short integration times will permit this method to be applicable in such situations but at the expense of accuracy in the Doppler velocity estimates. The two case studies presented here suggest that, with profiles every 4 s, reliable estimates of ϵ can be derived to within at least an order of magnitude throughout almost all of the lowest 2 km and, in the convective boundary layer, to within 50%. Increasing the integration time for individual profiles to 30 s can improve the accuracy substantially but potentially confines retrievals to within the convective boundary layer. Therefore, optimization of certain instrument parameters may be required for specific implementations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correlated k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models, and involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. The fluxes and heating rates for each band may then be computed by discretizing the reordered spectrum into of order 10 quadrature points per major gas, and performing a pseudo-monochromatic radiation calculation for each point. In this paper it is first argued that for clear-sky longwave calculations, sufficient accuracy for most applications can be achieved without the need for bands: reordering may be performed on the entire longwave spectrum. The resulting full-spectrum correlated k (FSCK) method requires significantly fewer pseudo-monochromatic calculations than standard CKD to achieve a given accuracy. The concept is first demonstrated by comparing with line-by-line calculations for an atmosphere containing only water vapor, in which it is shown that the accuracy of heating-rate calculations improves approximately in proportion to the square of the number of quadrature points. For more than around 20 points, the root-mean-squared error flattens out at around 0.015 K d−1 due to the imperfect rank correlation of absorption spectra at different pressures in the profile. The spectral overlap of m different gases is treated by considering an m-dimensional hypercube where each axis corresponds to the reordered spectrum of one of the gases. This hypercube is then divided up into a number of volumes, each approximated by a single quadrature point, such that the total number of quadrature points is slightly fewer than the sum of the number that would be required to treat each of the gases separately. The gaseous absorptions for each quadrature point are optimized such they minimize a cost function expressing the deviation of the heating rates and fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This approach is validated for atmospheres containing water vapor, carbon dioxide and ozone, in which it is found that in the troposphere and most of the stratosphere, heating-rate errors of less than 0.2 K d−1 can be achieved using a total of 23 quadrature points, decreasing to less than 0.1 K d−1 for 32 quadrature points. It would be relatively straightforward to extend the method to include other gases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Kriging interpolation method is combined with an object-based evaluation measure to assess the ability of the UK Met Office's dispersion and weather prediction models to predict the evolution of a plume of tracer as it was transported across Europe. The object-based evaluation method, SAL, considers aspects of the Structure, Amplitude and Location of the pollutant field. The SAL method is able to quantify errors in the predicted size and shape of the pollutant plume, through the structure component, the over- or under-prediction of the pollutant concentrations, through the amplitude component, and the position of the pollutant plume, through the location component. The quantitative results of the SAL evaluation are similar for both models and close to a subjective visual inspection of the predictions. A negative structure component for both models, throughout the entire 60 hour plume dispersion simulation, indicates that the modelled plumes are too small and/or too peaked compared to the observed plume at all times. The amplitude component for both models is strongly positive at the start of the simulation, indicating that surface concentrations are over-predicted by both models for the first 24 hours, but modelled concentrations are within a factor of 2 of the observations at later times. Finally, for both models, the location component is small for the first 48 hours after the start of the tracer release, indicating that the modelled plumes are situated close to the observed plume early on in the simulation, but this plume location error grows at later times. The SAL methodology has also been used to identify differences in the transport of pollution in the dispersion and weather prediction models. The convection scheme in the weather prediction model is found to transport more pollution vertically out of the boundary layer into the free troposphere than the dispersion model convection scheme resulting in lower pollutant concentrations near the surface and hence a better forecast for this case study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper assesses the potential for using building integrated photovoltaic (BIPV) roof shingles made from triple-junction amorphous silicon (3a-Si) for electrification and as a roofing material in tropical countries, such as Accra, Ghana. A model roof was constructed using triple-junction amorphous (3a-Si) PV on one section and conventional roofing tiles on the other. The performance of the PV module and tiles were measured, over a range of ambient temperatures and solar irradiance. PVSyst (a computer design software) was used to determine the most appropriate angle of tilt. It was observed that 3a-Si performs well in conditions such as Accra, because it is insensitive to high temperatures. Building integration gives security benefits, and reduces construction costs and embodied energy, compared to freestanding PV systems. Again, it serves as a means of protection from salt spray from the oceans and works well even when shaded. However, compared to conventional roofing materials, 3a-Si would increase the indoor temperature by 1-2 °C depending on the surface area of the roof covered with the PV modules. The results presented in this research enhance the understanding of varying factors involved in the selection of an appropriate method of PV installation to offset the short falls of the conventional roofing material in Ghana.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years nonpolynomial finite element methods have received increasing attention for the efficient solution of wave problems. As with their close cousin the method of particular solutions, high efficiency comes from using solutions to the Helmholtz equation as basis functions. We present and analyze such a method for the scattering of two-dimensional scalar waves from a polygonal domain that achieves exponential convergence purely by increasing the number of basis functions in each element. Key ingredients are the use of basis functions that capture the singularities at corners and the representation of the scattered field towards infinity by a combination of fundamental solutions. The solution is obtained by minimizing a least-squares functional, which we discretize in such a way that a matrix least-squares problem is obtained. We give computable exponential bounds on the rate of convergence of the least-squares functional that are in very good agreement with the observed numerical convergence. Challenging numerical examples, including a nonconvex polygon with several corner singularities, and a cavity domain, are solved to around 10 digits of accuracy with a few seconds of CPU time. The examples are implemented concisely with MPSpack, a MATLAB toolbox for wave computations with nonpolynomial basis functions, developed by the authors. A code example is included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various methods of assessment have been applied to the One Dimensional Time to Explosion (ODTX) apparatus and experiments with the aim of allowing an estimate of the comparative violence of the explosion event to be made. Non-mechanical methods used were a simple visual inspection, measuring the increase in the void volume of the anvils following an explosion and measuring the velocity of the sound produced by the explosion over 1 metre. Mechanical methods used included monitoring piezo-electric devices inserted in the frame of the machine and measuring the rotational velocity of a rotating bar placed on the top of the anvils after it had been displaced by the shock wave. This last method, which resembles original Hopkinson Bar experiments, seemed the easiest to apply and analyse, giving relative rankings of violence and the possibility of the calculation of a “detonation” pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes advances in ground-based thermodynamic profiling of the lower troposphere through sensor synergy. The well-documented integrated profiling technique (IPT), which uses a microwave profiler, a cloud radar, and a ceilometer to simultaneously retrieve vertical profiles of temperature, humidity, and liquid water content (LWC) of nonprecipitating clouds, is further developed toward an enhanced performance in the boundary layer and lower troposphere. For a more accurate temperature profile, this is accomplished by including an elevation scanning measurement modus of the microwave profiler. Height-dependent RMS accuracies of temperature (humidity) ranging from 0.3 to 0.9 K (0.5–0.8 g m−3) in the boundary layer are derived from retrieval simulations and confirmed experimentally with measurements at distinct heights taken during the 2005 International Lindenberg Campaign for Assessment of Humidity and Cloud Profiling Systems and its Impact on High-Resolution Modeling (LAUNCH) of the German Weather Service. Temperature inversions, especially of the lower boundary layer, are captured in a very satisfactory way by using the elevation scanning mode. To improve the quality of liquid water content measurements in clouds the authors incorporate a sophisticated target classification scheme developed within the European cloud observing network CloudNet. It allows the detailed discrimination between different types of backscatterers detected by cloud radar and ceilometer. Finally, to allow IPT application also to drizzling cases, an LWC profiling method is integrated. This technique classifies the detected hydrometeors into three different size classes using certain thresholds determined by radar reflectivity and/or ceilometer extinction profiles. By inclusion into IPT, the retrieved profiles are made consistent with the measurements of the microwave profiler and an LWC a priori profile. Results of IPT application to 13 days of the LAUNCH campaign are analyzed, and the importance of integrated profiling for model evaluation is underlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient method of combining neutron diffraction data over an extended Q range with detailed atomistic models is presented. A quantitative and qualitative mapping of the organization of the chain conformation in both glass and liquid phase has been performed. The proposed structural refinement method is based on the exploitation of the intrachain features of the diffraction pattern by the use of internal coordinates for bond lengths, valence angles and torsion rotations. Models are built stochastically by assignment of these internal coordinates from probability distributions with limited variable parameters. Variation of these parameters is used in the construction of models that minimize the differences between the observed and calculated structure factors. A series of neutron scattering data of 1,4-polybutadiene at the region 20320 K is presented. Analysis of the experimental data yield bond lengths for C-C and C=C of 1.54 and 1.35 Å respectively. Valence angles of the backbone were found to be at 112 and 122.8 for the CCC and CC=C respectively. Three torsion angles corresponding to the double bond and the adjacent R and β bonds were found to occupy cis and trans, s(, trans and g( and trans states, respectively. We compare our results with theoretical predictions, computer simulations, RIS models, and previously reported experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we derive novel approximations to trapped waves in a two-dimensional acoustic waveguide whose walls vary slowly along the guide, and at which either Dirichlet (sound-soft) or Neumann (sound-hard) conditions are imposed. The guide contains a single smoothly bulging region of arbitrary amplitude, but is otherwise straight, and the modes are trapped within this localised increase in width. Using a similar approach to that in Rienstra (2003), a WKBJ-type expansion yields an approximate expression for the modes which can be present, which display either propagating or evanescent behaviour; matched asymptotic expansions are then used to derive connection formulae which bridge the gap across the cut-off between propagating and evanescent solutions in a tapering waveguide. A uniform expansion is then determined, and it is shown that appropriate zeros of this expansion correspond to trapped mode wavenumbers; the trapped modes themselves are then approximated by the uniform expansion. Numerical results determined via a standard iterative method are then compared to results of the full linear problem calculated using a spectral method, and the two are shown to be in excellent agreement, even when $\epsilon$, the parameter characterising the slow variations of the guide’s walls, is relatively large.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-dimensional X-ray scattering system developed around a CCD-based area detector is presented, both in terms of hardware employed and software designed and developed. An essential feature is the integration of hardware and software, detection and sample environment control which enables time-resolving in-situ wide-angle X-ray scattering measurements of global structural and orientational parameters of polymeric systems subjected to a variety of controlled external fields. The development and operation of a number of rheometers purpose-built for the application of such fields are described. Examples of the use of this system in monitoring degrees of shear-induced orientation in liquid-crystalline systems and crystallization of linear polymers subsequent to shear flow are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the implementation of a 3D variational (3D-Var) data assimilation scheme for a morphodynamic model applied to Morecambe Bay, UK. A simple decoupled hydrodynamic and sediment transport model is combined with a data assimilation scheme to investigate the ability of such methods to improve the accuracy of the predicted bathymetry. The inverse forecast error covariance matrix is modelled using a Laplacian approximation which is calibrated for the length scale parameter required. Calibration is also performed for the Soulsby-van Rijn sediment transport equations. The data used for assimilation purposes comprises waterlines derived from SAR imagery covering the entire period of the model run, and swath bathymetry data collected by a ship-borne survey for one date towards the end of the model run. A LiDAR survey of the entire bay carried out in November 2005 is used for validation purposes. The comparison of the predictive ability of the model alone with the model-forecast-assimilation system demonstrates that using data assimilation significantly improves the forecast skill. An investigation of the assimilation of the swath bathymetry as well as the waterlines demonstrates that the overall improvement is initially large, but decreases over time as the bathymetry evolves away from that observed by the survey. The result of combining the calibration runs into a pseudo-ensemble provides a higher skill score than for a single optimized model run. A brief comparison of the Optimal Interpolation assimilation method with the 3D-Var method shows that the two schemes give similar results.