972 resultados para Near Infrared


Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES To conduct a survey across European cardiac centres to evaluate the methods used for cerebral protection during aortic surgery involving the aortic arch. METHODS All European centres were contacted and surgeons were requested to fill out a short, comprehensive questionnaire on an internet-based platform. One-third of more than 400 contacted centres completed the survey correctly. RESULTS The most preferred site for arterial cannulation is the subclavian-axillary, both in acute and chronic presentation. The femoral artery is still frequently used in the acute condition, while the ascending aorta is a frequent second choice in the case of chronic presentation. Bilateral antegrade brain perfusion is chosen by the majority of centres (2/3 of cases), while retrograde perfusion or circulatory arrest is very seldom used and almost exclusively in acute clinical presentation. The same pumping system of the cardio pulmonary bypass is most of the time used for selective cerebral perfusion, and the perfusate temperature is usually maintained between 22 and 26°C. One-third of the centres use lower temperatures. Perfusate flow and pressure are fairly consistent among centres in the range of 10-15 ml/kg and 60 mmHg, respectively. In 60% of cases, barbiturates are added for cerebral protection, while visceral perfusion still receives little attention. Regarding cerebral monitoring, there is a general tendency to use near-infrared spectroscopy associated with bilateral radial pressure measurement. CONCLUSIONS These data represent a snapshot of the strategies used for cerebral protection during major aortic surgery in current practice, and may serve as a reference for standardization and refinement of different approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The two small asteroid-like bodies orbiting Mars, Phobos and Deimos, are low albedo and exhibit similar visible to near-infrared spectra. Determining the origin of these moons is closely tied to determining their composition. From available spectroscopic data Phobos exhibits two distinct types of materials across its surface, and data from both Mars Express and Mars Reconnaissance Orbiter have provided additional details about the properties of these materials and their spatial relation to one another. Although no prominent diagnostic absorptions have been detected, systematic weak features are seen in some data. An extensive regolith is observed to have developed on both moons with characteristics that may be unique due to their special environment in Mars orbit. Understanding the character and evolution of the regolith of Phobos and Deimos is central to interpreting the moons׳ physical and optical properties. The cumulative data available for compositional analyses across the surface of Phobos and Deimos, however, remain incomplete in scope and character and ambiguous in interpretation. Consequently the composition of the moons of Mars remains uncertain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several lake ice phenology studies from satellite data have been undertaken. However, the availability of long-term lake freeze-thaw-cycles, required to understand this proxy for climate variability and change, is scarce for European lakes. Long time series from space observations are limited to few satellite sensors. Data of the Advanced Very High Resolution Radiometer (AVHRR) are used in account of their unique potential as they offer each day global coverage from the early 1980s expectedly until 2022. An automatic two-step extraction was developed, which makes use of near-infrared reflectance values and thermal infrared derived lake surface water temperatures to extract lake ice phenology dates. In contrast to other studies utilizing thermal infrared, the thresholds are derived from the data itself, making it unnecessary to define arbitrary or lake specific thresholds. Two lakes in the Baltic region and a steppe lake on the Austrian–Hungarian border were selected. The later one was used to test the applicability of the approach to another climatic region for the time period 1990 to 2012. A comparison of the extracted event dates with in situ data provided good agreements of about 10 d mean absolute error. The two-step extraction was found to be applicable for European lakes in different climate regions and could fill existing data gaps in future applications. The extension of the time series to the full AVHRR record length (early 1980 until today) with adequate length for trend estimations would be of interest to assess climate variability and change. Furthermore, the two-step extraction itself is not sensor-specific and could be applied to other sensors with equivalent near- and thermal infrared spectral bands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, sub-wavelength-pitch stacked double-gate metal nanotip arrays have been proposed to realize high current, high brightness electron bunches for ultrabright cathodes for x-ray free-electron laser applications. With the proposed device structure, ultrafast field emission of photoexcited electrons is efficiently driven by vertical incident near infrared laser pulses, via near field coupling of the surface plasmon polariton resonance of the gate electrodes with the nanotip apex. In this work, in order to gain insight in the underlying physical processes, the authors report detailed numerical studies of the proposed device. The results indicate the importance of the interaction of the double-layer surface plasmon polariton, the position of the nanotip, as well as the incident angle of the near infrared laser pulses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sublimation, the direct transition from solid to gas phase, is a process responsible for shaping and changing the reflectance properties of many Solar System surfaces. In this study, we have characterized the evolution of the structure/texture and of the visible and near-infrared (VIS–NIR) spectral reflectance of surfaces made of water ice mixed with analogues of complex extraterrestrial organic matter, named tholins, under low temperature (<-70° C) and pressure (10-⁵mbar) conditions. The experiments were carried out in the SCITEAS simulation setup recently built as part of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern (Pommerol, A. et al. [2015a]. Planet. Space Sci. 109–110, 106–122). As the water ice sublimated, we observed in situ the formation of a sublimation lag deposit made of a water-free porous (>90% porosity) network of organic filaments on top of the ice. The temporal evolution of the tholins and water ice spectral features (reflectance at the absorption bands wavelengths, red slope, from 0.40 to 1.90lm) are analyzed throughout the sublimation of the samples. We studied how different mixtures of tholins with water (0.1 wt.% tholins as coating or inclusions within the water particles), and different ice particle sizes (4.5 ± 2.5 or 67 ± 31lm) influence the morphological and spectral evolutions of the samples. The sublimation of the ice below the mantle produces a gas flow responsible for the ejection of mm to cm-sized fragments of the deposit in outbursts-like events. The results show remarkable differences between these samples in term of mantle structure, speed of mantle building, rates and surface area of mantle ejections. These data provide useful references for interpreting remote-sensing observations of icy Solar System surfaces, in particular the activity of comet nuclei where sublimation of organic-rich ices and deposition of organic-dust particles likely play a major role. Consequently, the data presented here could be of high interest for the interpretation of Rosetta, and also New Horizons, observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70°C) and pressure (10-⁵mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS–NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for interpreting remote-sensing observations of comets and also icy satellites or trans-neptunian objects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE This study presents the first in vivo real-time optical tissue characterization during image-guided percutaneous intervention using near-infrared diffuse optical spectroscopy sensing at the tip of a needle. The goal of this study was to indicate transition boundaries from healthy tissue to tumors, namely, hepatic carcinoma, based on the real-time feedback derived from the optical measurements. MATERIALS AND METHODS Five woodchucks with hepatic carcinoma were used for this study. The woodchucks were imaged with contrast-enhanced cone beam computed tomography with a flat panel detector C-arm system to visualize the carcinoma in the liver. In each animal, 3 insertions were performed, starting from the skin surface toward the hepatic carcinoma under image guidance. In 2 woodchucks, each end point of the insertion was confirmed with pathologic examination of a biopsy sample. While advancing the needle in the animals under image guidance such as fluoroscopy overlaid with cone beam computed tomography slice and ultrasound, optical spectra were acquired at the distal end of the needles. Optical tissue characterization was determined by translating the acquired optical spectra into clinical parameters such as blood, water, lipid, and bile fractions; tissue oxygenation levels; and scattering amplitude related to tissue density. The Kruskal-Wallis test was used to study the difference in the derived clinical parameters from the measurements performed within the healthy tissue and the hepatic carcinoma. Kurtoses were calculated to assess the dispersion of these parameters within the healthy and carcinoma tissues. RESULTS Blood and lipid volume fractions as well as tissue oxygenation and reduced scattering amplitude showed to be significantly different between the healthy part of the liver and the hepatic carcinoma (P < 0.05) being higher in normal liver tissue. A decrease in blood and lipid volume fractions and tissue oxygenation as well as an increase in scattering amplitude were observed when the tip of the needle crossed the margin from the healthy liver tissue to the carcinoma. The kurtosis for each derived clinical parameter was high in the hepatic tumor as compared with that in the healthy liver indicating intracarcinoma variability. CONCLUSIONS Tissue blood content, oxygenation level, lipid content, and tissue density all showed significant differences when the needle tip was guided from the healthy tissue to the carcinoma and can therefore be used to identify tissue boundaries during percutaneous image-guided interventions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a case of laparoscopic surgical management of an iatrogenic lymphorrhea using indocyanine green (ICG). A case of a patient who developed recurrent symptomatic lymphorrhea after laparoscopic radical hysterectomy and bilateral pelvic lymphadenectomy for an early stage cervical cancer is presented. Intraoperative bipedal interdigital subcutaneous injection of ICG exactly localized the disrupted lymphatic duct on fluorescence imaging performed with a near-infrared laparoscopic fluorescent optic device, thus allowing a successful surgical repair.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE (99)TC combined with blue-dye mapping is considered the best sentinel lymph node (SLN) mapping technique in cervical cancer. Indocyanine green (ICG) with near infrared fluorescence imaging has been introduced as a new methodology for SLN mapping. The aim of this study was to compare these two techniques in the laparoscopic treatment of cervical cancer. METHODS Medical records of patients undergoing laparoscopic SLN mapping for cervical cancer with either (99)Tc and patent blue dye (Group 1) or ICG (Group 2) from April 2008 until August 2012 were reviewed. Sensitivity, specificity, and overall and bilateral detection rates were calculated and compared. RESULTS Fifty-eight patients were included in the study-36 patients in Group 1 and 22 patients in Group 2. Median tumor diameter was 25 and 29 mm, and mean SLN count was 2.1 and 3.7, for Groups 1 and 2, respectively. Mean non-SLN (NSLN) count was 39 for both groups. SLNs were ninefold more likely to be affected by metastatic disease compared with NSLNs (p < 0.005). Sensitivity and specificity were both 100 %. Overall detection rates were 83 and 95.5 % (p = nonsignificant), and bilateral detection rates were 61 and 95.5 % (p < 0.005), for Groups 1 and 2, respectively. In 75 % of cases, SLNs were located along the external or internal iliac nodal basins. CONCLUSIONS ICG SLN mapping in cervical cancer provides high overall and bilateral detection rates that compare favorably with the current standard of care.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To evaluate and characterize multiple evanescent white dot syndrome abnormalities with modern multimodal imaging modalities. METHODS: This retrospective cohort study evaluated fundus photography, fluorescein angiography, indocyanine green angiography, optical coherence tomography, enhanced depth imaging optical coherence tomography, short-wavelength autofluorescence, and near-infrared autofluorescence. RESULTS: Thirty-four multiple evanescent white dot syndrome patients with mean age of 28.7 years were studied (range, 14-49 years). Twenty-six patients were women, and eight were men. Initial mean visual acuity was 0.41 logMAR. Final mean visual acuity was 0.03 logMAR. Fluorescein angiography shows a variable number of mid retinal early fluorescent dots distributed in a wreathlike pattern, which correlate to fundus photography, fundus autofluorescence, and indocyanine green angiography. Indocyanine green angiography imaging shows the dots and also hypofluorescent, deeper, and larger spots, which are occasionally confluent, demonstrating a large plaque of deep retinal hypofluorescence. Optical coherence tomography imaging shows multifocal debris centered at and around the ellipsoid layer, corresponding to the location of spots seen with photography, indocyanine green angiography, and fluorescein angiography. Protrusions of the hyperreflectant material from the ellipsoid layer toward the outer nuclear layer correspond to the location of dots seen with photography, indocyanine green angiography, and fluorescein angiography. CONCLUSION: Multimodal imaging analysis of the retina in patients with multiple evanescent white dot syndrome shows additional features that may help in the diagnosis of the disease and in further understanding its etiology. Multiple evanescent white dot syndrome is predominantly a disease of the outer retina, centered at the ellipsoid zone, but also involving the interdigitation zone and the outer nuclear layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have designed and built a laboratory facility to investigate the spectro-photometric and morphologic properties of different types of ice-bearing planetary surface analogs and follow their evolution upon exposure to a low pressure and low temperature environment. The results obtained with this experiment are used to verify and improve our interpretations of current optical remote-sensing datasets. They also provide valuable information for the development and operation of future optical instruments. The Simulation Chamber for Imaging the Temporal Evolution of Analogue Samples (SCITEAS) is a small thermal vacuum chamber equipped with a variety of ports and feedthroughs that permit both in-situ and remote characterizations as well as interacting with the sample. A large quartz window located directly above the sample is used to observe its surface from outside with a set of visible and near-infrared cameras. The sample holder can be easily and quickly inserted and removed from the chamber and is compatible with the other measurement facilities of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern. We report here on the results of two of the first experiments performed in the SCITEAS chamber. In the first experiment, fine-grained water ice mixed with dark organic and mineral matter was left to sublime in vacuum and at low temperature, simulating the evolution of the surface of a comet nucleus approaching the Sun. We observed and characterized the formation and evolution of a crust of refractory organic and mineral matter at the surface of the sample and linked the evolution of its structure and texture to its spectro-photometric properties. In the second experiment, a frozen soil was prepared by freezing a mixture of smectite mineral and water. The sample was then left to sublime for 6 h to simulate the loss of volatiles from icy soil at high latitudes on Mars. Colour images were produced using the definitions of the filters foreseen for the CaSSIS imager of the Exomars/TGO mission in order to prepare future science operations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Permanently shadowed regions at the poles of the Moon and Mercury have been pointed out as candidates for hosting water ice at their surface. We have measured in the laboratory the visible and near infrared spectral range (VIS-NIR) bidirectional reflectance of intimate mixtures of water ice and the JSC-1AF lunar simulant for different ice concentrations, particle sizes, and measurement geometries. The nonlinearity between the measured reflectance and the amount of ice in the mixture can be reproduced to some extent by the mixing formulas of standard reflectance models, in particular, those of Hapke and Hiroi, which are tested here. Estimating ice concentrations from reflectance data without knowledge of the mixing coefficientsstrongly dependent on the size/shape of the grainscan result in large errors. According to our results, it is possible that considerable amounts of water ice might be intimately mixed in the regolith of the Moon and Mercury without producing noticeable photometric signatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At the mid-latitudes of Utopia Planitia (UP), Mars, a suite of spatially-associated landforms exhibit geomorphological traits that, on Earth, would be consistent with periglacial processes and the possible freeze-thaw cycling of water. The suite comprises small-sized polygonally-patterned ground, polygon-junction and -margin pits, and scalloped, rimless depressions. Typically, the landforms incise a dark-toned terrain that is thought to be ice-rich. Here, we investigate the dark-toned terrain by using high resolution images from the HiRISE as well as near-infrared spectral-data from the OMEGA and CRISM. The terrain displays erosional characteristics consistent with a sedimentary nature and near-infrared spectra characterised by a blue slope similar to that of weathered basaltic-tephra. We also describe volcanic terrain that is dark-toned and periglacially-modified in the Kamchatka mountain-range of eastern Russia. The terrain is characterised by weathered tephra inter-bedded with snow, ice-wedge polygons and near-surface excess ice. The excess ice forms in the pore space of the tephra as the result of snow-melt infiltration and, subsequently, in-situ freezing. Based on this possible analogue, we construct a three-stage mechanism that explains the possible ice-enrichment of a broad expanse of dark-toned terrain at the mid-latitudes of UP: (1) the dark-toned terrain accumulates and forms via the regional deposition of sediments sourced from explosive volcanism; (2) the volcanic sediments are blanketed by atmospherically-precipitated (H2O) snow, ice or an admixture of the two, either concurrent with the volcanic-events or between discrete events; and, (3) under the influence of high obliquity or explosive volcanism, boundary conditions tolerant of thaw evolve and this, in turn, permits the migration, cycling and eventual formation of excess ice in the volcanic sediments. Over time, and through episodic iterations of this scenario, excess ice forms to decametres of depth. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Martian surface is covered by a fine-layer of oxidized dust responsible for its red color in the visible spectral range (Bibring et al., 2006; Morris et al., 2006). In the near infrared, the strongest spectral feature is located between 2.6 and 3.6 mu m and is ubiquitously observed on the planet (Jouglet et al., 2007; Milliken et al., 2007). Although this absorption has been studied for many decades, its exact attribution and its geological and climatic implications remain debated. We present new lines of evidence from laboratory experiments, orbital and landed missions data, and characterization of the unique Martian meteorite NWA 7533, all converging toward the prominent role of hydroxylated ferric minerals. Martian breccias (so-called "Black Beauty" meteorite NWA7034 and its paired stones NWA7533 and NWA 7455) are unique pieces of the Martian surface that display abundant evidence of aqueous alteration that occurred on their parent planet (Agee et al., 2013). These dark stones are also unique in the fact that they arose from a near surface level in the Noachian southern hemisphere (Humayun et al., 2013). We used IR spectroscopy, Fe-XANES and petrography to identify the mineral hosts of hydrogen in NWA 7533 and compare them with observations of the Martian surface and results of laboratory experiments. The spectrum of NWA 7533 does not show mafic mineral absorptions, making its definite identification difficult through NIR remote sensing mapping. However, its spectra are virtually consistent with a large fraction of the Martian highlands. Abundant NWA 7034/7533 (and paired samples) lithologies might abound on Mars and might play a role in the dust production mechanism. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Potential Desiccation Polygons (PDPs), tens to hundreds of meters in size, have been observed in numerous regions on Mars, particularly in ancient (>3Gyr old) terrains of inferred paleolacustrine/playa geologic setting, and in association with hydrous minerals such as smectites. Therefore, a better understanding of the conditions in which large desiccation polygons form could yield unique insight into the ancient climate on Mars. Many dried lakebeds/playas in western United States display large (>50m wide) desiccation polygons, which we consider to be analogues for PDPs on Mars. Therefore, we have carried out fieldwork in seven of these dried lakes in San Bernardino and the Death Valley National Park regions complemented with laboratory and spectral analysis of collected samples. Our study shows that the investigated lacustrine/playa sediments have (a) a soil matrix containing 40-75% clays and fine silt (by volume) where the clay minerals are dominated by illite/muscovite followed by smectite, (b) carbonaceous mineralogy with variable amounts of chloride and sulfate salts, and significantly, (c) roughly similar spectral signatures in the visible-near-infrared (VIS-NIR) range. We conclude that the development of large desiccation fractures is consistent with water table retreat. In addition, the comparison of the mineralogical to the spectral observations further suggests that remote sensing VIS-NIR spectroscopy has its limitations for detailed characterization of lacustrine/playa deposits. Finally, our results imply that the widespread distribution of PDPs on Mars indicates global or regional climatic transitions from wet conditions to more arid ones making them important candidate sites for future in situ missions.