1000 resultados para Natural quantifiers
Resumo:
En este trabajo se desarrollara una criba de frecuencia natural para el calibrado de patatas en diferentes tamaños. La motivación para realizar trabajo surge de la idea de mejorar los sistemas de clasificado de hortalizas de hoy en día, concretamente el de patatas. El consumo de patatas en la actualidad es muy elevado, ya que se considera un alimento básico en nuestras vidas, por tanto su comercialización está asegurada. En la comercialización, la patata, debe cumplir unos requisitos obligatorios establecidos por la ley. El presente proyecto trata del diseño, para su posterior fabricación, de una criba para la clasificación de patata en fresco en siete tamaños diferentes aplicando la tecnología de vibración basada en la frecuencia natural de los materiales. Para ello una vez determinadas las luces y superficies de malla idóneas para cada tamaño a clasificar, elegiremos el soporte físico que las va a soportar. Este modo de clasificar las patatas es un sistema novedoso, ya que consigue un importante ahorro de energía
Resumo:
Seria impensável concebermos os nossos dias sem a utilização de energia eléctrica. Esta forma de energia é responsável pelo desenvolvimento económico e a sua disponibilidade é indicadora da qualidade de vida dos povos. A procura de formas de obtenção desta energia que minimizem os impactes para o ambiente tem levado à adopção de energias renováveis mas também ao desenvolvimento de novas tecnologias que permitam aumentar a eficiência de conversão de energia entre as suas várias formas. Neste sentido procedeu-se à análise de um estudo de caso da central termoeléctrica a gás natural com tecnologia de ciclo combinado da Tapada do Outeiro, Portugal. Living without electricity is nowadays unconceived. The economic growth and quality of life is strongly dependent on this source of energy. The search for new forms of producing electricity in order to minimise environmental impacts has lead to the adoption of renewable energies and to the improvement of new technologies which allow at the same time to reach high efficiency in the process of energy conversion from the chemical form to the electrical one. This article is about a case study of a natural gas turbine power plant with combined cycle, at “Tapada do Outeiro”, Portugal.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
19 hojas : ilustraciones, fotografías a color
Resumo:
15 hojas : ilustraciones, fotografías a color.
Resumo:
In research areas involving mathematical rigor, there are numerous benefits to adopting a formal representation of models and arguments: reusability, automatic evaluation of examples, and verification of consistency and correctness. However, accessibility has not been a priority in the design of formal verification tools that can provide these benefits. In earlier work [30] we attempt to address this broad problem by proposing several specific design criteria organized around the notion of a natural context: the sphere of awareness a working human user maintains of the relevant constructs, arguments, experiences, and background materials necessary to accomplish the task at hand. In this report we evaluate our proposed design criteria by utilizing within the context of novel research a formal reasoning system that is designed according to these criteria. In particular, we consider how the design and capabilities of the formal reasoning system that we employ influence, aid, or hinder our ability to accomplish a formal reasoning task – the assembly of a machine-verifiable proof pertaining to the NetSketch formalism. NetSketch is a tool for the specification of constrained-flow applications and the certification of desirable safety properties imposed thereon. NetSketch is conceived to assist system integrators in two types of activities: modeling and design. It provides capabilities for compositional analysis based on a strongly-typed domain-specific language (DSL) for describing and reasoning about constrained-flow networks and invariants that need to be enforced thereupon. In a companion paper [13] we overview NetSketch, highlight its salient features, and illustrate how it could be used in actual applications. In this paper, we define using a machine-readable syntax major parts of the formal system underlying the operation of NetSketch, along with its semantics and a corresponding notion of validity. We then provide a proof of soundness for the formalism that can be partially verified using a lightweight formal reasoning system that simulates natural contexts. A traditional presentation of these definitions and arguments can be found in the full report on the NetSketch formalism [12].
Resumo:
This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightness remains an unsolved problem. Such a process, called "anchoring" of lightness, has properties including articulation, insulation, configuration, and area effects. The model quantitatively simulates such psychophysical lightness data, as well as other data such as discounting the illuminant, the double brilliant illusion, and lightness constancy and contrast effects. The model retina embodies gain control at retinal photoreceptors, and spatial contrast adaptation at the negative feedback circuit between mechanisms that model the inner segment of photoreceptors and interacting horizontal cells. The model can thereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A new anchoring mechanism, called the Blurred-Highest-Luminance-As-White (BHLAW) rule, helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural color images under variable lighting conditions, and is compared with the popular RETINEX model.
Resumo:
Under natural viewing conditions small movements of the eye, head, and body prevent the maintenance of a steady direction of gaze. It is known that stimuli tend to fade when they a restabilized on the retina for several seconds. However; it is unclear whether the physiological motion of the retinal image serves a visual purpose during the brief periods of natural visual fixation. This study examines the impact of fixational instability on the statistics of the visua1 input to the retina and on the structure of neural activity in the early visual system. We show that fixational instability introduces a component in the retinal input signals that in the presence of natural images, lacks spatial correlations. This component strongly influences neural activity in a model of the LGN. It decorrelates cell responses even if the contrast sensitivity functions of simulated cells arc not perfectly tuned to counterbalance the power-law spectrum of natural images. A decorrelation of neural activity at the early stages of the visual system has been proposed to be beneficial for discarding statistical redundancies in the input signals. The results of this study suggest that fixational instability might contribute to establishing efficient representations of natural stimuli.
Resumo:
How do humans rapidly recognize a scene? How can neural models capture this biological competence to achieve state-of-the-art scene classification? The ARTSCENE neural system classifies natural scene photographs by using multiple spatial scales to efficiently accumulate evidence for gist and texture. ARTSCENE embodies a coarse-to-fine Texture Size Ranking Principle whereby spatial attention processes multiple scales of scenic information, ranging from global gist to local properties of textures. The model can incrementally learn and predict scene identity by gist information alone and can improve performance through selective attention to scenic textures of progressively smaller size. ARTSCENE discriminates 4 landscape scene categories (coast, forest, mountain and countryside) with up to 91.58% correct on a test set, outperforms alternative models in the literature which use biologically implausible computations, and outperforms component systems that use either gist or texture information alone. Model simulations also show that adjacent textures form higher-order features that are also informative for scene recognition.
Resumo:
Lacticin 3147, enterocin AS-48, lacticin 481, variacin, and sakacin P are bacteriocins offering promising perspectives in terms of preservation and shelf-life extension of food products and should find commercial application in the near future. The studies detailing their characterization and bio-preservative applications are reviewed. Transcriptomic analyses showed a cell wall-targeted response of Lactococcus lactis IL1403 during the early stages of infection with the lytic bacteriophage c2, which is probably orchestrated by a number of membrane stress proteins and involves D-alanylation of membrane lipoteichoic acids, restoration of the physiological proton motive force disrupted following bacteriophage infection, and energy conservation. Sequencing of the eight plasmids of L. lactis subsp. cremoris DPC3758 from raw milk cheese revealed three anti-phage restriction/modification (R/M) systems, immunity/resistance to nisin, lacticin 481, cadmium and copper, and six conjugative/mobilization regions. A food-grade derivative strain with enhanced bacteriophage resistance was generated via stacking of R/M plasmids. Sequencing and functional analysis of the four plasmids of L. lactis subsp. lactis biovar. diacetylactis DPC3901 from raw milk cheese revealed genes novel to Lactococcus and typical of bacteria associated with plants, in addition to genes associated with plant-derived lactococcal strains. The functionality of a novel high-affinity regulated system for cobalt uptake was demonstrated. The bacteriophage resistant and bacteriocin-producing plasmid pMRC01 places a metabolic burden on lactococcal hosts resulting in lowered growth rates and increased cell permeability and autolysis. The magnitude of these effects is strain dependent but not related to bacteriocin production. Starters’ acidification capacity is not significantly affected. Transcriptomic analyses showed that pMRC01 abortive infection (Abi) system is probably subjected to a complex regulatory control by Rgg-like ORF51 and CopG-like ORF58 proteins. These regulators are suggested to modulate the activity of the putative Abi effectors ORF50 and ORF49 exhibiting topology and functional similarities to the Rex system aborting bacteriophage λ lytic growth.
Resumo:
Marine sponges have been an abundant source of new metabolites in recent years. The symbiotic association between the bacteria and the sponge has enabled scientists to access the bacterial diversity present within the bacterial/sponge ecosystem. This study has focussed on accessing the bacterial diversity in two Irish coastal marine sponges, namely Amphilectus fucorum and Eurypon major. A novel species from the genus Aquimarina has been isolated from the sponge Amphilectus fucorum. The study has also resulted in the identification of an α–Proteobacteria, Pseudovibrio sp. as a potential producer of antibiotics. Thus a targeted based approach to specifically cultivate Pseudovibrio sp. may prove useful for the development of new metabolites from this particular genus. Bacterial isolates from the marine sponge Haliclona simulans were screened for anti–fungal activity and one isolate namely Streptomyces sp. SM8 displayed activity against all five fungal strains tested. The strain was also tested for anti–bacterial activity and it showed activity against both against B. subtilis and P. aeruginosa. Hence a combinatorial approach involving both biochemical and genomic approaches were employed in an attempt to identify the bioactive compounds with these activities which were being produced by this strain. Culture broths from Streptomyces sp. SM8 were extracted and purified by various techniques such as reverse–phase HPLC, MPLC and ash chromatography. Anti–bacterial activity was observed in a fraction which contained a hydroxylated saturated fatty acid and also another compound with a m/z 227 but further structural elucidation of these compounds proved unsuccessful. The anti–fungal fractions from SM8 were shown to contain antimycin–like compounds, with some of these compounds having different retention times from that of an antimycin standard. A high–throughput assay was developed to screen for novel calcineurin inhibitors using yeast as a model system and three putative bacterial extracts were found to be positive using this screen. One of these extracts from SM8 was subsequently analysed using NMR and the calcineurin inhibition activity was con rmed to belong to a butenolide type compound. A H. simulans metagenomic library was also screened using the novel calcineurin inhibitor high–throughput assay system and eight clones displaying putative calcineurin inhibitory activity were detected. The clone which displayed the best inhibitory activity was subsequently sequenced and following the use of other genetic based approaches it became clear that the inhibition was being caused by a hypothetical protein with similarity to a hypothetical Na+/Ca2+ exchanger protein. The Streptomyces sp. SM8 genome was sequenced from a fragment library using Roche 454 pyrosequencing technology to identify potential secondary metabolism clusters. The draft genome was annotated by IMG/ER using the Prodigal pipeline. The Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMPN00000000. The genome contains genes which appear to encode for several polyketide synthases (PKS), non–ribosomal peptide synthetases (NRPS), terpene and siderophore biosynthesis and ribosomal peptides. Transcriptional analyses led to the identification of three hybrid clusters of which one is predicted to be involved in the synthesis of antimycin, while the functions of the others are as yet unknown. Two NRPS clusters were also identified, of which one may be involved in gramicidin biosynthesis and the function of the other is unknown. A Streptomyces sp. SM8 NRPS antC gene knockout was constructed and extracts from the strain were shown to possess a mild anti–fungal activity when compared to the SM8 wild–type. Subsequent LCMS analysis of antC mutant extracts confirmed the absence of the antimycin in the extract proving that the observed anti–fungal activity may involve metabolite(s) other than antimycin. Anti–bacterial activity in the antC gene knockout strain against P. aeruginosa was reduced when compared to the SM8 wild–type indicating that antimycin may be contributing to the observed anti–bacterial activity in addition to the metabolite(s) already identified during the chemical analyses. This is the first report of antimycins exhibiting anti–bacterial activity against P. aeruginosa. One of the hybrid clusters potentially involved in secondary metabolism in SM8 that displayed high and consistent levels of gene–expression in RNA studies was analysed in an attempt to identify the metabolite being produced by the pathway. A number of unusual features were observed following bioinformatics analysis of the gene sequence of the cluster, including a formylation domain within the NRPS cluster which may add a formyl group to the growing chain. Another unusual feature is the lack of AT domains on two of the PKS modules. Other unusual features observed in this cluster is the lack of a KR domain in module 3 of the cluster and an aminotransferase domain in module 4 for which no clear role has been hypothesised.
Resumo:
Countries across the world are being challenged to decarbonise their energy systems in response to diminishing fossil fuel reserves, rising GHG emissions and the dangerous threat of climate change. There has been a renewed interest in energy efficiency, renewable energy and low carbon energy as policy‐makers seek to identify and put in place the most robust sustainable energy system that can address this challenge. This thesis seeks to improve the evidence base underpinning energy policy decisions in Ireland with a particular focus on natural gas, which in 2011 grew to have a 30% share of Ireland’s TPER. Natural gas is used in all sectors of the Irish economy and is seen by many as a transition fuel to a low-carbon energy system; it is also a uniquely excellent source of data for many aspects of energy consumption. A detailed decomposition analysis of natural gas consumption in the residential sector quantifies many of the structural drives of change, with activity (R2 = 0.97) and intensity (R2 = 0.69) being the best explainers of changing gas demand. The 2002 residential building regulations are subject to an ex-post evaluation, which using empirical data finds a 44 ±9.5% shortfall in expected energy savings as well as a 13±1.6% level of non-compliance. A detailed energy demand model of the entire Irish energy system is presented together with scenario analysis of a large number of energy efficiency policies, which show an aggregate reduction in TFC of 8.9% compared to a reference scenario. The role for natural gas as a transition fuel over a long time horizon (2005-2050) is analysed using an energy systems model and a decomposition analysis, which shows the contribution of fuel switching to natural gas to be worth 12 percentage points of an overall 80% reduction in CO2 emissions. Finally, an analysis of the potential for CCS in Ireland finds gas CCS to be more robust than coal CCS for changes in fuel prices, capital costs and emissions reduction and the cost optimal location for a gas CCS plant in Ireland is found to be in Cork with sequestration in the depleted gas field of Kinsale.
Resumo:
Natural and human-made disasters cause on average 120,000 deaths and over US$140 billion in damage to property and infrastructure every year, with national, regional and international actors consistently responding to the humanitarian imperative to alleviate suffering wherever it may be found. Despite various attempts to codify international disaster laws since the 1920s, a right to humanitarian assistance remains contested, reflecting concerns regarding the relative importance of state sovereignty vis-à-vis individual rights under international law. However, the evolving acquis humanitaire of binding and non-binding normative standards for responses to humanitarian crises highlights the increasing focus on rights and responsibilities applicable in disasters; although the International Law Commission has also noted the difficulty of identifying lex lata and lex ferenda regarding the protection of persons in the event of disasters due to the “amorphous state of the law relating to international disaster response.” Therefore, using the conceptual framework of transnational legal process, this thesis analyses the evolving normative frameworks and standards for rights-holders and duty-bearers in disasters. Determining the process whereby rights are created and evolve, and their potential internalisation into domestic law and policy, provides a powerful analytical framework for examining the progress and challenges of developing accountable responses to major disasters.
Resumo:
The main objective of this thesis is to outline the synthetic chemistry involved in the preparation of a range of novel lanostane and cholestane derivatives, and subsequent investigation into their biological activity in cancer cells. The biological results obtained throughout the project have driven the strategic synthesis of new compounds, in an effort to optimise the anti cancer potential of lanostane and cholestane derivatives. The first chapter begins with an overview of steroidal compounds and details a literature review of the natural sources of these moieties, as well as their biosynthesis and reported synthetic derivatives. The biological activity of interesting natural and synthetic analogues is also discussed. In addition, an insight into some currently prescribed pharmaceutical compounds, with functional groups relevant to this project, is presented. The second chapter discusses the methods employed for the synthesis of these novel lanostane and cholestane derivatives, and comprises three main sections. Firstly, various oxidation products of lanosterol are synthesised, mainly via epoxidations of the C-8,9 and C- 24,25 alkenes, and also allylic oxidations at these positions. Secondly, amine derivatives of lanosterol are formed by cleaving the lanostane side chain, thereby yielding a new cholestane nucleus, and performing several reductive aminations on the resulting key aldehyde intermediates. Various amines such as piperidine, morpholine, diethylamine and aniline are employed in the reductive amination reactions to yield novel cholestane steroids with amine side chains. Finally, starting from stigmasterol and proceeding with the same methodology of cleaving the steroidal side chain and subsequently performing reductive aminations, novel cholestane derivatives of the biologically active amines are synthesised. The cytotoxicity of these compounds against CaCo-2 and U937 cell lines is presented in terms of percentage viability of cells, IC50 value and apoptosis. The MTT assay is used to determine the percentage viability of cells, and the IC50 data is generated from the MTT results. Apoptosis is measured in terms of fold increase relative to a carrier control. In summary, the compounds formed are discussed in terms of chemical synthesis, spectroscopic interpretation and biological activity. The main reaction pathways involved in the chemistry within this project are various oxidations and reductive amination. The final chapter is a detailed account of the full experimental procedures for the compounds synthesised during this work, including characterisation using spectroscopic and analytical data.