899 resultados para Nash Equilibrium
Resumo:
Exploring thermal transport in graphene-polymer nanocomposite is significant to its applications with better thermal properties. Interfacial thermal conductance between graphene and polymer matrix plays a critical role in the improvement of thermal conductivity of graphene-polymer nanocomposite. Unfortunately, it is still challenging to understand the interfacial thermal transport between graphene nanofiller and polymer matrix at small material length scale. To this end, using non-equilibrium molecular dynamics simulations, we investigate the interfacial thermal conductance of graphene-polyethylene (PE) nanocomposite. The influence of functionalization with hydrocarbon chains on the interfacial thermal conductance of graphene-polymer nanocomposites was studied, taking into account of the effects of model size and thermal conductivity of graphene. An analytical model is also used to calculate the thermal conductivity of nanocomposite. The results are considered to contribute to development of new graphene-polymer nanocomposites with tailored thermal properties.
Resumo:
1. Background/context This presentation will report on emerging results from a two phase project funded by the Australian Learning and Teaching Council (ALTC). The project was designed in partnership with five universities and aimed to embed peer review within the local teaching and learning culture by using a distributive leadership framework. 2. The initiative/practice The presentation will highlight research outcomes that bring together both the fundamentals of peer review of teaching with the broader contextual elements of Integration, Leadership and Development. It will be demonstrated that peer review of teaching can be implemented and have advantages for academic staff, teaching evaluation and an organisation if attention is given to strategies that influence the contexts and cultures of teaching. Peer review as a strategy to develop excellence in teaching is considered from a holistic perspective that by necessity encompasses all elements of an educational environment. Results demonstrate achievements that can be obtained through working to foster conditions needed for sustainable leadership and change. The work has implications for policy, research, teaching development and student outcomes and has potential application world-wide. 3. Method(s) of evaluative data collection and analysis The 2 phase project collected focus group and questionnaire data to inform research results that were analysed using a thematic qualitative approach and statistical exploration. 4. Evidence of effectiveness The presentation will demonstrate the effectiveness of distributive leadership and strategic approaches to working for cultural change through the presentation of project findings.
Resumo:
This presentation addresses issues related to leadership, academic development and scholarship of teaching and learning, and highlights research funded by the Australian Office of Learning and Teaching (OLT) designed to embed and sustain peer review of teaching within the culture of 5 Australian universities: Queensland University of Technology, University of Technology, Sydney, University of Adelaide, Curtin University, and Charles Darwin University. Peer review of teaching in higher education will be emphasised as a professional process for providing feedback on teaching and learning practice, which if sustained, can become an effective ongoing strategy for academic development (Barnard et al, 2011; Bell, 2005; Bolt and Atkinson, 2010; McGill & Beaty 2001, 1992; Kemmis & McTaggart, 2000). The research affirms that using developmental peer review models (Barnard et al, 2011; D'Andrea, 2002; Hammersley-Fletcher & Orsmond, 2004) can bring about successful implementation, especially when implemented within a distributive leadership framework (Spillane & Healey, 2010). The project’s aims and objectives were to develop leadership capacity and integrate peer review as a cultural practice in higher education. The research design was a two stage inquiry process over 2 years. The project began in July 2011 and encompassed a development and pilot phase followed by a cascade phase with questionnaire and focus group evaluation processes to support ongoing improvement and measures of outcome. Leadership development activities included locally delivered workshops complemented by the identification and support of champions. To optimise long term sustainability, the project was implemented through existing learning and teaching structures and processes within the respective partner universities. Research outcomes highlight the fundamentals of peer review of teaching and the broader contextual elements of integration, leadership and development, expressed as a conceptual model for embedding peer review of teaching within higher education. The research opens a communicative space about introduction of peer review that goes further than simply espousing its worth and introduction. The conceptual model highlights the importance of development of distributive leadership capacity, integration of policies and processes, and understanding the values, beliefs, assumptions and behaviors embedded in an organizational culture. The presentation overviews empirical findings that demonstrate progress to advance peer review requires an ‘across-the-board’ commitment to embed change, and inherently demands a process that co-creates connection across colleagues, discipline groups, and the university sector. Progress toward peer review of teaching as a cultural phenomenon can be achieved and has advantages for academic staff, scholarship, teaching evaluation and an organisation, if attention is given to strategies that influence the contexts and cultures of teaching practice. Peer review as a strategy to develop excellence in teaching is considered from a holistic perspective that by necessity encompasses all elements of an educational environment and has a focus on scholarship of teaching. The work is ongoing and has implication for policy, research, teaching development and student outcomes, and has potential application world-wide.
Resumo:
This project is a two phase design working in partnership with five universities to develop, implement and systematically embed a distributive leadership model that aims to embed peer partnership (review, development) within the culture of teaching and learning excellence. This presentation will posit a ‘prototype’ peer review leadership model based on ongoing research that brings together both the fundamentals of peer review with the broader importance of context and persons. It will be argued that essential to teaching development is a need to address not only the implementation of peer partnership programs but also strategies to influence and change both the contexts of teaching and the advantages for colleagues. Peer review as a strategy to develop excellence in teaching needs to be considered from a holistic perspective encompassing all elements of the teaching environment. The emphasis is on working to foster the type of conditions needed for leadership and change to begin and be sustained. The work has implications for policy, research, leadership development and student outcomes and has potential application world-wide. Phase 1 has collected focus interview and questionnaire data to inform the research and is being analysed using a thematic qualitative approach and statistical analysis. Evidence is emerging currently as the project is ongoing.
Resumo:
The ability to understand and predict how thermal, hydrological,mechanical and chemical (THMC) processes interact is fundamental to many research initiatives and industrial applications. We present (1) a new Thermal– Hydrological–Mechanical–Chemical (THMC) coupling formulation, based on non-equilibrium thermodynamics; (2) show how THMC feedback is incorporated in the thermodynamic approach; (3) suggest a unifying thermodynamic framework for multi-scaling; and (4) formulate a new rationale for assessing upper and lower bounds of dissipation for THMC processes. The technique is based on deducing time and length scales suitable for separating processes using a macroscopic finite time thermodynamic approach. We show that if the time and length scales are suitably chosen, the calculation of entropic bounds can be used to describe three different types of material and process uncertainties: geometric uncertainties,stemming from the microstructure; process uncertainty, stemming from the correct derivation of the constitutive behavior; and uncertainties in time evolution, stemming from the path dependence of the time integration of the irreversible entropy production. Although the approach is specifically formulated here for THMC coupling we suggest that it has a much broader applicability. In a general sense it consists of finding the entropic bounds of the dissipation defined by the product of thermodynamic force times thermodynamic flux which in material sciences corresponds to generalized stress and generalized strain rates, respectively.
Resumo:
Two lecture notes describe recent developments of evolutionary multi objective optimization (MO) techniques in detail and their advantages and drawbacks compared to traditional deterministic optimisers. The role of Game Strategies (GS), such as Pareto, Nash or Stackelberg games as companions or pre-conditioners of Multi objective Optimizers is presented and discussed on simple mathematical functions in Part I , as well as their implementations on simple aeronautical model optimisation problems on the computer using a friendly design framework in Part II. Real life (robust) design applications dealing with UAVs systems or Civil Aircraft and using the EAs and Game Strategies combined material of Part I & Part II are solved and discussed in Part III providing the designer new compromised solutions useful to digital aircraft design and manufacturing. Many details related to Lectures notes Part I, Part II and Part III can be found by the reader in [68].
Resumo:
Unsaturated water flow in soil is commonly modelled using Richards’ equation, which requires the hydraulic properties of the soil (e.g., porosity, hydraulic conductivity, etc.) to be characterised. Naturally occurring soils, however, are heterogeneous in nature, that is, they are composed of a number of interwoven homogeneous soils each with their own set of hydraulic properties. When the length scale of these soil heterogeneities is small, numerical solution of Richards’ equation is computationally impractical due to the immense effort and refinement required to mesh the actual heterogeneous geometry. A classic way forward is to use a macroscopic model, where the heterogeneous medium is replaced with a fictitious homogeneous medium, which attempts to give the average flow behaviour at the macroscopic scale (i.e., at a scale much larger than the scale of the heterogeneities). Using the homogenisation theory, a macroscopic equation can be derived that takes the form of Richards’ equation with effective parameters. A disadvantage of the macroscopic approach, however, is that it fails in cases when the assumption of local equilibrium does not hold. This limitation has seen the introduction of two-scale models that include at each point in the macroscopic domain an additional flow equation at the scale of the heterogeneities (microscopic scale). This report outlines a well-known two-scale model and contributes to the literature a number of important advances in its numerical implementation. These include the use of an unstructured control volume finite element method and image-based meshing techniques, that allow for irregular micro-scale geometries to be treated, and the use of an exponential time integration scheme that permits both scales to be resolved simultaneously in a completely coupled manner. Numerical comparisons against a classical macroscopic model confirm that only the two-scale model correctly captures the important features of the flow for a range of parameter values.
Resumo:
“Hybrid” hydrogen storage, where hydrogen is stored in both the solid material and as a high pressure gas in the void volume of the tank can improve overall system efficiency by up to 50% compared to either compressed hydrogen or solid materials alone. Thermodynamically, high equilibrium hydrogen pressures in metal–hydrogen systems correspond to low enthalpies of hydrogen absorption–desorption. This decreases the calorimetric effects of the hydride formation–decomposition processes which can assist in achieving high rates of heat exchange during hydrogen loading—removing the bottleneck in achieving low charging times and improving overall hydrogen storage efficiency of large hydrogen stores. Two systems with hydrogenation enthalpies close to −20 kJ/mol H2 were studied to investigate the hydrogenation mechanism and kinetics: CeNi5–D2 and ZrFe2−xAlx (x = 0.02; 0.04; 0.20)–D2. The structure of the intermetallics and their hydrides were studied by in situ neutron powder diffraction at pressures up to 1000 bar and complementary X-ray diffraction. The deuteration of the hexagonal CeNi5 intermetallic resulted in CeNi5D6.3 with a volume expansion of 30.1%. Deuterium absorption filled three different types of interstices, Ce2Ni2 and Ni4 tetrahedra, and Ce2Ni3 half-octahedra and was accompanied by a valence change for Ce. Significant hysteresis was observed between deuterium absorption and desorption which profoundly decreased on a second absorption cycle. For the Al-modified Laves-type C15 ZrFe2−xAlx intermetallics, deuteration showed very fast kinetics of H/D exchange and resulted in a volume increase of the FCC unit cells of 23.5% for ZrFe1.98Al0.02D2.9(1). Deuterium content, hysteresis of H/D uptake and release, unit cell expansion and stability of the hydrides systematically change with the amount of Al content. In the deuteride D atoms exclusively occupy the Zr2(Fe,Al)2 tetrahedra. Observed interatomic distances are Zr–D = 1.98–2.11; (Fe, Al)–D = 1.70–1.75A˚ . Hydrogenation slightly increases the magnetic moment of the Fe atoms in ZrFe1.98Al0.02 and ZrFe1.96Al0.04 from 1.9 �B at room temperature for the alloy to 2.2 �B for its deuteride.
Resumo:
This paper reviews some recent results in motion control of marine vehicles using a technique called Interconnection and Damping Assignment Passivity-based Control (IDA-PBC). This approach to motion control exploits the fact that vehicle dynamics can be described in terms of energy storage, distribution, and dissipation, and that the stable equilibrium points of mechanical systems are those at which the potential energy attains a minima. The control forces are used to transform the closed-loop dynamics into a port-controlled Hamiltonian system with dissipation. This is achieved by shaping the energy-storing characteristics of the system, modifying its interconnection structure (how the energy is distributed), and injecting damping. The end result is that the closed-loop system presents a stable equilibrium (hopefully global) at the desired operating point. By forcing the closed-loop dynamics into a Hamiltonian form, the resulting total energy function of the system serves as a Lyapunov function that can be used to demonstrate stability. We consider the tracking and regulation of fully actuated unmanned underwater vehicles, its extension to under-actuated slender vehicles, and also manifold regulation of under-actuated surface vessels. The paper is concluded with an outlook on future research.
Resumo:
This project is a two phase design working in partnership with five universities to develop, implement and systematically embed a distributive leadership model that aims to embed peer partnership (review, development) within the culture of teaching and learning excellence. This presentation will posit a ‘prototype’ peer review leadership model based on ongoing research that brings together both the fundamentals of peer review with the broader importance of context and persons. It will be argued that essential to teaching development is a need to address not only the implementation of peer partnership programs but also strategies to influence and change both the contexts of teaching and the advantages for colleagues. Peer review as a strategy to develop excellence in teaching needs to be considered from a holistic perspective encompassing all elements of the teaching environment. The emphasis is on working to foster the type of conditions needed for leadership and change to begin and be sustained. The work has implications for policy, research, leadership development and student outcomes and has potential application world-wide. Phase 1 has collected focus interview and questionnaire data to inform the research and is being analysed using a thematic qualitative approach and statistical analysis Evidence is emerging currently as the project is ongoing
Resumo:
Teaching is a core function of higher education and must be effective if it is to provide students with learning experiences that are stimulating, challenging and rewarding Obtaining feedback on teaching is indispensable to enhancing the quality of learning design, facilitating personal and/or professional development and maximising student learning outcomes. Peer review of teaching has the potential to improve the quality of teaching at tertiary level, by encouraging critical reflection on teaching, innovation in teaching practice and scholarship of teaching at all academic levels. However, embedding peer review within the culture of teaching and learning is a significant challenge that requires sustained commitment from senior leadership as well as those in leadership roles within local contexts.
Resumo:
Clinical experience, or experience in the ‘real world’ of practice, is a fundamental component of many health professional courses. It often involves students undertaking practical experience in clinical workplace settings, typically referred to as clinical placements, under the supervision of health professionals. Broadly speaking, the role of clinical supervisors, or teachers, is aimed at assisting students to integrate the theoretical and skills based components of the curriculum within the context of patient/client care (Erstzen et al 2009). Clinical experience also provides students with the opportunity to assimilate the attitudes, values and skills which they require to become appropriately skilled professionals in the environments in which they will eventually practise. However, clinical settings are particularly challenging learning environments for students. Unlike classroom learning, students in the clinical setting frequently find themselves involved in unplanned and often complex activities with patients and other health care providers, being supervised by a variety of clinical staff who have very different methods and styles of teaching, and negotiating bureaucratic or hierarchical structures in busy clinical workplaces where they may only be spending a limited amount of time. Kilminster et al (2007) also draw attention to tensions that may exist between the learning needs of students and the provision of quality care or need to prevent harm to the patient (e.g. Elkind et al 2007). All of these factors complicate the realisation of clinical education goals and underscore the need for effective clinical teaching practices that maximise student learning in clinical environments. This report provides a summary of work that has been achieved in relation to ALTC projects and fellowships associated with clinical teaching, and a review of scholarly publications relevant to this field. The report also makes recommendations based on issues identified and/or where further work is indicated. The projects and fellowships reviewed cover a range of discipline areas including Biology, Paramedic Practice, Clinical Exercise Physiology, Occupational Therapy, Speech Pathology, Physiotherapy, Pharmacy, Nursing and Veterinary Science. The main areas of focus cover issues related to curriculum, particularly in relation to industry expectations of ‘work-ready’ graduates and the implications for theoretical and practical, or clinical preparation; development of competency assessment tools that are nationally applicable across discipline-specific courses; and improvement of clinical learning through strategies targeting the clinical learning environment, building the teaching capacity of clinical supervisors and/or enhancing the clinical learning/teaching process.
Resumo:
The purpose of this project was to build the leadership capacity of clinical supervisors in the nursing discipline by developing, implementing and systematically embedding a leadership model into the structure and practice of student supervision. The University worked in partnership with three major metropolitan hospitals in Queensland to develop a framework and professional development program incorporating leadership and clinical supervision. The Leadership and Clinical Education (LaCE) program consisted of two structured workshops complemented by individual personal development projects undertaken by participants. Participants were supported in these activities with a purpose-built website that provides access to a wide variety of information and other learning resources. Quantitative and qualitative evaluations indicated that the approach was highly valued by participants, as it promoted useful peer dialogue, sharing of experiences and personal development in relation to assisting leadership development and student learning in the workplace. The LaCE program provides an ideal springboard for introducing the development of welltrained leaders into the clinical workplace. The resources developed have the potential to provide ongoing support for clinical supervisors to improve the learning of undergraduate nursing student. The challenge will be to achieve continued innovation within clinical education through sustainable leadership programs.
Promoting resilience and effective workplace functioning in international students in health courses
Resumo:
The purpose of this project was to improve the quality of the learning experiences of international students in nursing, public health and nutrition and dietetics, both at university and in the clinical setting. The university worked in partnership with three major metropolitan health care facilities/services in Queensland to develop a framework and resources designed to promote quality work-integrated learning experiences for international students and clinical supervisory staff. The Resilience in International Student Education (RISE) model consists of student and staff workshops complemented by a purpose-built Cultural Connections for Learning (CCL) website that provides access to a wide variety of information and other learning resources. Quantitative and qualitative evaluations indicate that the approach is highly valued by participants as it promotes useful dialogue, sharing of experiences and greater understanding regarding quality learning experiences for international students in the health workplace. It provides an ideal springboard for promoting collaboration between international students and clinical supervisors in the workplace. The resources developed have the potential to enhance student learning as well as clinical teaching. The challenge will be to achieve continued progress within international student education through the development of sustainable strategies to embed the program within the context of individual curricula.
Resumo:
In the finite element modelling of steel frames, external loads usually act along the members rather than at the nodes only. Conventionally, when a member is subjected to these transverse loads, they are converted to nodal forces which act at the ends of the elements into which the member is discretised by either lumping or consistent nodal load approaches. For a contemporary geometrically non-linear analysis in which the axial force in the member is large, accurate solutions are achieved by discretising the member into many elements, which can produce unfavourable consequences on the efficacy of the method for analysing large steel frames. Herein, a numerical technique to include the transverse loading in the non-linear stiffness formulation for a single element is proposed, and which is able to predict the structural responses of steel frames involving the effects of first-order member loads as well as the second-order coupling effect between the transverse load and the axial force in the member. This allows for a minimal discretisation of a frame for second-order analysis. For those conventional analyses which do include transverse member loading, prescribed stiffness matrices must be used for the plethora of specific loading patterns encountered. This paper shows, however, that the principle of superposition can be applied to the equilibrium condition, so that the form of the stiffness matrix remains unchanged with only the magnitude of the loading being needed to be changed in the stiffness formulation. This novelty allows for a very useful generalised stiffness formulation for a single higher-order element with arbitrary transverse loading patterns to be formulated. The results are verified using analytical stability function studies, as well as with numerical results reported by independent researchers on several simple structural frames.