988 resultados para NUCLEAR BETA-CATENIN
Resumo:
A panel of monoclonal antibodies specific of alpha-tubulin (TU-01, TU-09) and beta-tubulin (TU-06, TU-13) subunits was used to study the location of N-terminal structural domains of tubulin in adult mouse brain. The specificity of antibodies was confirmed b immunoblotting experiments. Immunohistochemical staining of vibratome sections from cerebral cortex, cerebellum, hippocampus, and corpus callosum showed that antibodies TU-01, TU-09, and TU-13 reacted with neuronal and glial cells and their processes, whereas the TU-06 antibody stained only the perikarya. Dendrites and axons were either unstained or their staining was very weak. As the TU-06 epitope is located on the N-terminal structural domain of beta-tubulin, the observed staining pattern cannot be interpreted as evidence of a distinct subcellular localization of beta-tubulin isotypes or known post-translational modifications. The limited distribution of the epitope could, rather, reflect differences between the conformations of tubulin molecules in microtubules of somata and neurites or, alternatively, a specific masking of the corresponding region on the N-terminal domain of beta-tubulin by interacting protein(s) in dendrites and axons.
Resumo:
Incubation of total protein extracts of Schistosoma mansoni with 3H 17-beta-estradiol and 20-hydroxyecdysone, revealed steroid binding proteins in both, male and female worms. The interaction of nuclear proteins with restriction fragments of the gender and stage-specific gene F-10 was investigated using the "Band-Shift" technique. Distinct male and female nuclear proteins bound to the fragments of this gene. Among the nuclear proteins, only those rich in cysteine residues bound to DNA. In vitro incubation of live worms with the estrogen antagonist Tamoxifen, altered the pattern of the DNA binding proteins, producing in females, a band profile similar to that obtained with male worm protein extracts. When Tamoxifen was injected into schistosome infected mice, the eggs produced by females presented an abnormal morphology, compatible with non-viable eggs. These results suggest that the regulation of transcription of the F-10 gene might involve steroid receptors.
Resumo:
Peroxisome proliferator-activated receptors, PPARs, (NR1C) are nuclear hormone receptors implicated in energy homeostasis. Upon activation, these ligand-inducible transcription factors stimulate gene expression by binding to the promoter of target genes. The different structural domains of PPARs are presented in terms of activation mechanisms, namely ligand binding, phosphorylation, and cofactor interaction. The specificity of ligands, such as fatty acids, eicosanoids, fibrates and thiazolidinediones (TZD), is described for each of the three PPAR isotypes, alpha (NR1C1), beta (NR1C2) and gamma (NR1C3), so as the differential tissue distribution of these isotypes. Finally, general and specific functions of the PPAR isotypes are discussed, namely their implication in the control of inflammatory responses, cell proliferation and differentiation, the roles of PPARalpha in fatty acid catabolism and of PPARgamma in adipogenesis.
Resumo:
The lateral hypothalamic area is considered the classic 'feeding centre', regulating food intake, arousal and motivated behaviour through the actions of orexin and melanin-concentrating hormone (MCH). These neuropeptides are inhibited in response to feeding-related signals and are released during fasting. However, the molecular mechanisms that regulate and integrate these signals remain poorly understood. Here we show that the forkhead box transcription factor Foxa2, a downstream target of insulin signalling, regulates the expression of orexin and MCH. During fasting, Foxa2 binds to MCH and orexin promoters and stimulates their expression. In fed and in hyperinsulinemic obese mice, insulin signalling leads to nuclear exclusion of Foxa2 and reduced expression of MCH and orexin. Constitutive activation of Foxa2 in the brain (Nes-Cre/+;Foxa2T156A(flox/flox) genotype) results in increased neuronal MCH and orexin expression and increased food consumption, metabolism and insulin sensitivity. Spontaneous physical activity of these animals in the fed state is significantly increased and is similar to that in fasted mice. Conditional activation of Foxa2 through the T156A mutation expression in the brain of obese mice also resulted in improved glucose homeostasis, decreased fat and increased lean body mass. Our results demonstrate that Foxa2 can act as a metabolic sensor in neurons of the lateral hypothalamic area to integrate metabolic signals, adaptive behaviour and physiological responses.
Resumo:
Penicillin tolerance among 67 strains of beta-hemolytic streptococci was examined by determining the ratio of the minimal bactericidal concentration to the minimal inhibitory concentration as 32 or greater. Tolerance was demonstrated in 15 group A strains and in 11,7, and 4 of groups B, C and G, respectively. Thereafter the effects of a subminimal inhibitory concentration (1/2MIC) of penicillin on the bacterial products of four tolerant and four nontolerant strains (two of each Lancefield group) were analyzed and compared. The antibiotic caused a marked increase in the expression of the group carbo-hydrates for strains of group B. Penicillin was found to reduce the cell-bound hemolysin activities of the four tolerant strains and to increase the activity of the other (free) form of nontolerant groups A, C and G hemolysins. Penicillin caused an increase in the extracellular hyaluronidase activities of one group A and groups B, C and G streptococci. With added antibiotic the production of deoxyribonuclease by tolerant groups A, C and G was greatly enhanced and that of the group B streptococcus was arrested.
Resumo:
CD44 is a facultative cell surface proteoglycan that serves as the principal cell surface receptor for hyaluronan (HA). Studies have shown that in addition to participating in numerous signaling pathways, CD44 becomes internalized upon engagement by ligand and that a portion of its intracellular domain can translocate to the nucleus where it is believed to play a functional role in cell proliferation and survival. However, the mechanisms whereby fragments of CD44 enter the nucleus have not been elucidated. Here we show that CD44 interacts with two import receptors of the importin β superfamily, importin β itself and transportin. Inhibition of importin β-dependent transport failed to block CD44 accumulation in the nucleus. By contrast, inhibition of the transportin-dependent pathway abrogated CD44 import. Mutagenesis of the intracellular domain of CD44 revealed that the 20 membrane-proximal residues contain sequences required for transportin-mediated nuclear transport. Our observations provide evidence that CD44 interacts with importin family members and identify the transportin-dependent pathway as the mechanism whereby full-length CD44 enters the nucleus.
Biased V beta usage in immature thymocytes is independent of DJ beta proximity and pT alpha pairing.
Resumo:
During thymus development, the TCR beta locus rearranges before the TCR alpha locus. Pairing of productively rearranged TCR beta-chains with an invariant pT alpha chain leads to the formation of a pre-TCR and subsequent expansion of immature pre-T cells. Essentially nothing is known about the TCR V beta repertoire in pre-T cells before or after the expression of a pre-TCR. Using intracellular staining, we show here that the TCR V beta repertoire is significantly biased at the earliest developmental stage in which VDJ beta rearrangement has occurred. Moreover (and in contrast to the V(H) repertoire in immature B cells), V beta repertoire biases in immature T cells do not reflect proximity of V beta gene segments to the DJ beta cluster, nor do they depend upon preferential V beta pairing with the pT alpha chain. We conclude that V gene repertoires in developing T and B cells are controlled by partially distinct mechanisms.
Resumo:
BACKGROUND & AIMS: The follicle-associated epithelium (FAE) that overlies Peyer's patches (PPs) exhibits distinct features compared with the adjacent villus epithelium. Besides the presence of antigen-sampling membranous M cells and the down-regulation of digestive functions, it constitutively expresses the chemokine CCL20. The mechanisms that induce FAE differentiation and CCL20 expression are poorly understood. The aim of this work was to test whether lymphotoxin beta receptor signaling (LTbetaR), which plays a central role in PPs' organogenesis, mediates CCL20 gene expression in intestinal epithelial cells. METHODS: CCL20, lymphotoxin beta (LTbeta) and LTbetaR expression were monitored during embryonic development by in situ hybridization of mouse intestine. The human intestinal epithelial cell line T84 was used to study CCL20 expression following LTalpha(1)/beta(2) stimulation. In vivo CCL20 expression following agonistic anti-LTbetaR antibody treatment was studied by laser microdissection and quantitative RT-PCR. RESULTS: CCL20 was expressed in the FAE before birth at the time when the first hematopoietic CD4(+)CD3(-) appeared in the PP anlage. LTbetaR was expressed in the epithelium during PP organogenesis, making it a putative target for LTalpha(1)beta(2)signals. In vitro, CCL20 was induced in T84 cells upon LTbetaR signaling, either using an agonistic ligand or anti-LTbeta receptor agonistic antibody. LTalpha(1)beta(2)-induced CCL20 expression was found to be NF-kappaB dependent. LTbetaR signaling up-regulated CCL20 expression in the small intestinal epithelium in vivo. CONCLUSIONS: Our results show that LTbetaR signaling induces CCL20 expression in intestinal epithelial cells, suggesting that this pathway triggers constitutive production of CCL20 in the FAE.
Resumo:
GLUT2 disappearance is a marker of the beta cell glucose-unresponsiveness associated with diabetes. Understanding the factor(s) leading to this dysfunction may shed light on pathogenesis of diabetes. Since the regulation of GLUT2 expression in diabetes can so far only be studied in in vivo experiments, we developed a novel experimental approach to study the genetic regulation of GLUT2 in diabetes. By encapsulating islets or cell lines in semi-permeable membranes, these cells can be exposed to the diabetic environment of rats or mice and can be retrieved for analysis of GLUT2 expression and for the change in the secretory response to glucose. Immunocytochemical analysis of transporter expression reveals changes in protein expression while transcriptional analysis of GLUT2 gene expression could be performed in cells transfected with promoter-reporter gene constructs. Using this last approach we hope to be able to characterize the promoter regions involved in the beta cell- and diabetes-specific regulation of GLUT2 expression and possibly to determine which factors are responsible for this regulation.
Resumo:
Glucagon-like peptide 1 (GLP-1) is a hormone derived from the preproglucagon molecule and is secreted by intestinal L cells. It is the most potent stimulator of glucose-induced insulin secretion and also suppresses in vivo acid secretion by gastric glands. A cDNA for the GLP-1 receptor was isolated by transient expression of a rat pancreatic islet cDNA library into COS cells; this was followed by binding of radiolabeled GLP-1 and screening by photographic emulsion autoradiography. The receptor transfected into COS cells binds GLP-1 with high affinity and is coupled to activation of adenylate cyclase. The receptor binds specifically GLP-1 and does not bind peptides of related structure and similar function, such as glucagon, gastric inhibitory peptide, vasoactive intestinal peptide, or secretin. The receptor is 463 amino acids long and contains seven transmembrane domains. Sequence homology is found only with the receptors for secretin, calcitonin, and parathyroid hormone, which form a newly characterized family of G-coupled receptors.
Resumo:
Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.
Resumo:
The pathogenic bacterium Pseudomonas aeruginosa utilizes the 3-oxododecanoyl homoserine lactone (3OC(12)-HSL) autoinducer as a signaling molecule to coordinate the expression of virulence genes through quorum sensing. 3OC(12)-HSL also affects responses in host cells, including the upregulation of genes encoding inflammatory cytokines. This proinflammatory response may exacerbate underlying disease during P. aeruginosa infections. The specific mechanism(s) through which 3OC(12)-HSL influences host responses is unclear, and no mammalian receptors for 3OC(12)-HSL have been identified to date. Here, we report that 3OC(12)-HSL increases mRNA levels for a common panel of proinflammatory genes in murine fibroblasts and human lung epithelial cells. To identify putative 3OC(12)-HSL receptors, we examined the expression patterns of a panel of nuclear hormone receptors in these two cell lines and determined that both peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and PPARgamma were expressed. 3OC(12)-HSL functioned as an agonist of PPARbeta/delta transcriptional activity and an antagonist of PPARgamma transcriptional activity and inhibited the DNA binding ability of PPARgamma. The proinflammatory effect of 3OC(12)-HSL in lung epithelial cells was blocked by the PPARgamma agonist rosiglitazone, suggesting that 3OC(12)-HSL and rosiglitazone are mutually antagonistic negative and positive regulators of PPARgamma activity, respectively. These data identify PPARbeta/delta and PPARgamma as putative mammalian 3OC(12)-HSL receptors and suggest that PPARgamma agonists may be employed as anti-inflammatory therapeutics for P. aeruginosa infections.
Resumo:
Two rat monoclonal antibodies (mAbs), 44-22-1 and 46-6B5, which recognize an alloreactive cytotoxic clone, 3F9, have been further tested on a panel of T hybridomas and cytotoxic T-cell clones for binding and functional activities. The mAbs recognized only those cells sharing the expression of the T-cell receptor beta-chain variable region gene V beta 6 with 3F9. All V beta 6+ cells were activated by these mAbs under cross-linking conditions and their antigen-specific activation was blocked by soluble mAb. Furthermore, depletion of 46-6B5+ normal lymph node T cells eliminated all cells expressing the epitope recognized by 44-22-1 and V beta 6 mRNA.
Resumo:
By using improved pulsed field gel electrophoresis conditions, the molecular karyotype of the reference clone CL Brener selected for Trypanosoma cruzi genome project was established. A total of 20 uniform chromosomal bands ranging in size from 0.45 to 3.5 Megabase pairs (Mbp) were resolved in a single run. The weighted sum of the chromosomal bands was approximately 87 Mbp. Chromoblots were hybridized with 39 different homologous probes, 13 of which identified single chromosomes. Several markers showed linkage and four different linkage groups were identified, each comprising two markers. Densitometric analysis suggests that most of the chromosomal bands contain two or more chromosomes representing either homologous chromosomes and/or heterologous chromosomes with similar sizes