990 resultados para NO(X) STORAGE
Resumo:
Powder neutron di®raction and Hi-Q neutron di®raction data have been recorded and analysed in order to obtain the local and long range order of Cu in Cu-doped CeO2 with three doping levels of Cu. Rietveld method and MCGR techniques of data analysis for the two types of data reveal that the Cu ion is in the 2+ oxidation state and has a vacancy in its ¯rst coordination shell. These deductions from the data analysis ¯t well with the mechanism of catalysis we propose.
Resumo:
We briefly review the growth and structural properties of View the MathML source bulk single crystals and View the MathML source epitaxial films grown on semi-insulating GaAs substrates. Temperature-dependent transport measurements on these samples are then correlated with the information obtained from structural (XRD, TEM, SEM) and optical (FTIR absorption) investigations. The temperature dependence of mobility and the Hall coefficient are theoretically modelled by exactly solving the linearized Boltzmann transport equation by inversion of the collision matrix and the relative role of various scattering mechanisms in limiting the low temperature and View the MathML source mobility is estimated. Finally, the first observation of Shubnikov oscillations in InAsSb is discussed.
Resumo:
The Rotatary Bridgman method was used to grow ternary InSb(1-x)SBix, crystals. In this method the ampoule was subjected to reversible rotation at a rate of 60rpm. High quality crystals of 8mm diameter and 25mm length were grown with 6.5 atomic percentage of Bi. The grown crystals were characterized employing various techniques such as energy dispersive spectroscopy, x-ray diffraction, differential scanning calorimetery, infrared spectroscopy and Hall measurement.
Resumo:
Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any subset of k nodes within the n-node network. However, regenerating codes possess in addition, the ability to repair a failed node by connecting to an arbitrary subset of d nodes. It has been shown that for the case of functional repair, there is a tradeoff between the amount of data stored per node and the bandwidth required to repair a failed node. A special case of functional repair is exact repair where the replacement node is required to store data identical to that in the failed node. Exact repair is of interest as it greatly simplifies system implementation. The first result of this paper is an explicit, exact-repair code for the point on the storage-bandwidth tradeoff corresponding to the minimum possible repair bandwidth, for the case when d = n-1. This code has a particularly simple graphical description, and most interestingly has the ability to carry out exact repair without any need to perform arithmetic operations. We term this ability of the code to perform repair through mere transfer of data as repair by transfer. The second result of this paper shows that the interior points on the storage-bandwidth tradeoff cannot be achieved under exact repair, thus pointing to the existence of a separate tradeoff under exact repair. Specifically, we identify a set of scenarios which we term as ``helper node pooling,'' and show that it is the necessity to satisfy such scenarios that overconstrains the system.
Resumo:
In0.2Ga0.8N layers were directly grown on Si(111) substrate by plasma-assisted molecular beam epitaxy (PAMBE). Structural characteristics of the as-grown InGaN epilayers were evaluated high resolution X-ray diffraction and composition of InGaN was estimated from photoluminescence spectra using the standard Vegard's law. High-resolution X-ray photoemission spectroscopy measurements were used to determine the band offset of wurtzite-In0.2Ga0.8N/Si(111) heterojunctions. The valence band of InGaN is found to be 2.08 +/- 0.04 eV below that of Si. The conduction band offset (CBO) of InGaN/Si heterojunction is found similar to 0.74 eV and a type-II heterojunction. (C) 2012 The Japan Society of Applied Physics
Resumo:
The transition metal complexes of salicylhydrazone of anthranilhydrazide (H2L) were synthesised. The structures of metal complexes were characterized by various spectroscopic [IR, NMR, UV-Vis, EPR], thermal and other physicochemical methods. The single-crystal X-ray diffraction study of [Cu(HL)Cl]center dot H2O reveal its orthorhombic system with space group P2(1)2(1)2 and Z=4. The copper center has a distorted square planar geometry with ONO and Cl as the donor atoms. The ligand and its metal chelates have been screened for their antimicrobial and anti-tubercular activities using serial dilution method. Metal complexes in general have exhibited better antibacterial and antifungal activity than the free ligand and in few cases better than the standard used. Among the bacterial strains used, the complexes are highly potent against Gram-positive strains compared to Gram-negative. Anti-tubercular activity exhibited by the Co(II) complex is comparable with the standard used. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
We have investigated thermal properties of bulk Si15Te85-xAgx (4 <= x <= 20) glasses in detail, through alternating differential scanning calorimetry experiments. The composition dependence of thermal parameters reveal the signatures of rigidity percolation and chemical threshold at compositions x = 12 and x = 19, respectively. The stability and glass forming ability of these glasses have also been determined using the data obtained from different thermodynamic quantities and it is found that the Si15Te85-xAgx glasses in the region 12 <= x <= 17 are more stable when compared to other glasses of the same series. Further, the blueshift observed in Raman spectroscopy investigations, in the composition range 12 <= x <= 13, support the occurrence of stiffness threshold in this composition range. All Si15Te85-xAgx (4 <= x <= 20) glasses are found to exhibit memory type switching (for sample thickness 0.25 mm) in the input current range 3-9 mA. The effect of rigidity percolation and chemical thresholds on switching voltages are observed at x = 12 and 19, respectively. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682759]
Resumo:
Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any arbitrary of nodes. However regenerating codes possess in addition, the ability to repair a failed node by connecting to any arbitrary nodes and downloading an amount of data that is typically far less than the size of the data file. This amount of download is termed the repair bandwidth. Minimum storage regenerating (MSR) codes are a subclass of regenerating codes that require the least amount of network storage; every such code is a maximum distance separable (MDS) code. Further, when a replacement node stores data identical to that in the failed node, the repair is termed as exact. The four principal results of the paper are (a) the explicit construction of a class of MDS codes for d = n - 1 >= 2k - 1 termed the MISER code, that achieves the cut-set bound on the repair bandwidth for the exact repair of systematic nodes, (b) proof of the necessity of interference alignment in exact-repair MSR codes, (c) a proof showing the impossibility of constructing linear, exact-repair MSR codes for d < 2k - 3 in the absence of symbol extension, and (d) the construction, also explicit, of high-rate MSR codes for d = k+1. Interference alignment (IA) is a theme that runs throughout the paper: the MISER code is built on the principles of IA and IA is also a crucial component to the nonexistence proof for d < 2k - 3. To the best of our knowledge, the constructions presented in this paper are the first explicit constructions of regenerating codes that achieve the cut-set bound.
Resumo:
Hexagonal Ge3N4 layer was prepared on Ge surface by in situ direct atomic source nitridation and it is promising buffer layer to grow GaN on Ge (111). The valence band offset (VBO) of GaN/Ge3N4/Ge heterojunctions is determined by X-ray photoemission spectroscopy. The valence band (VB) of Ge3N4 is found to be 0.38?+/-?0.04?eV above the GaN valance band and 1.14?+/-?0.04?eV below the Ge. The GaN/Ge3N4 and Ge3N4/Ge are found type-II and type-I heterojunctions, respectively. The exact measurements of the VBO and conduction band offset (CBO) are important for use of GaN/Ge3N4/Ge (111) heterosystems.
Resumo:
Anomalous temperature dependence of Raman phonon wavenumbers attributed to phononphonon anharmonic interactions has been studied in two different families of pyrochlore titanates. We bring out the role of the ionic size of titanium and the inherent vacancies of pyrochlore in these anomalies by studying the effect of replacement of Ti4?+ by Zr4?+ in Sm2Ti2O7 and by stuffing Ho3?+ in place of Ti4?+ in Ho2Ti2O7 with appropriate oxygen stoichiometry. Our results show that an increase in the concentration of the larger ion, i.e. Zr4?+ or Ho3?+, reduces the phonon anomalies, thus implying a decrease in the phononphonon anharmonic interactions. In addition, we find signatures of coupling between a phonon and crystal field transition in Sm2Ti2O7, manifested as an unusual increase in the phonon intensity with increasing temperature. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
The synthesis of THF coordinated aluminium nanoparticles by the solvated metal atom dispersion (SMAD) method is described. These colloids are not stable with respect to precipitation of aluminium nanoparticles. The precipitated aluminium nanopowder is highly pyrophoric. Highly monodisperse colloidal aluminium nanoparticles (3.1 +/- 0.6 nm) stabilized by a capping agent, hexadecyl amine (HDA), have also been prepared by the SMAD method. They are stable towards precipitation of particles for more than a week. The Al-HDA nanoparticles are not as pyrophoric as the Al-THF samples. Particles synthesized in this manner were characterized by high-resolution electron microscopy and powder X-ray diffraction. Annealing of the Al-HDA nanoparticles resulted in carbonization of the capping agent on the surface of the particles which imparts air stability to them. Carbonization of the capping agent was established using Raman spectroscopy and TEM. The annealed aluminium nanoparticles were found to be stable even upon their exposure to air for over a month which was evident from the powder XRD, TGA/DSC, and TEM studies. The successful passivation was further confirmed with the determination of high active aluminium content (95 wt%) upon exposure and storage under air.
Resumo:
AlxTi1-xN/CrN multilayer coatings were fabricated by magnetron sputtering and those hardness variations were studied by observing the crack propagation and measuring the chemical bonding state of nitrides by Ti addition. While AlN/CrN multilayer shown stair-like crack propagation, AlxTi1-xN/CrN multilayer illustrated straight crack propagation. Most interestingly, Ti addition induced more broken nitrogen bonds in the nitride multilayers, leading to the reduction of hardness. However, the hardness of Al0.25Ti0.75N/CrN multilayer, having high Ti contents, increased by the formation of many Ti-N bond again instead of Al-N bond. From these results, we found that linear crack propagation behavior was dominated by broken nitrogen bonds in the AlxT1-xN/CrN multilayer coatings.
Resumo:
We discuss the possibility of using electroproduction of J/psi as a probe of gluon Sivers function by measuring single spin asymmetry (SSA) in experiments with transversely polarized protons and electron beams. We estimate SSA for JLab, HERMES, COMPASS, and eRHIC energies using the color evaporation model of charmonium production and find asymmetry up to 25% for certain choices of model parameters which have been used earlier for estimating SSA in the SIDIS and Drell-Yan processes.
Resumo:
The experimental determination of the magnetic ground state of triangular lattice anti-ferromagnet LiNiO2 is an intriguing problem as the system is prone to be Li deficient. We have been successful in preparing nearly stoichiometric LiNiO2 showing an anti-ferromagnetic ground state with an ordering temperature similar to 12 K. As the Li deficiency increases the sample exhibits spin glass behavior evidenced by a shift in the spin glass freezing temperature as a function of frequency in the ac susceptibility studies. As the Li deficiency crosses a critical limit, the sample becomes ferromagnetic in nature. We are able to tune the ferromagnetic transition temperature up to 240 K by varying the Li content. Finally, we have constructed a magnetic phase diagram. (C) 2012 American Institute of Physics. doi:10.1063/1.3675997]