908 resultados para NIR spectroscopy. Hair. Forensic analysis. PCA. Nicotine
Resumo:
Este trabajo se realizó en el contexto del Plan de estudios que la Facultad de Ciencias Agrarias (UNCuyo) implementó a partir de 1994 para las carreras de Ingeniería Agronómica y Licenciatura en Bromatología. Se calcularon algunos indicadores educativos (Tasa de Aprobación, Tasa de Deserción, Tasa de Recursado y Tasa de Permanencia) con el objeto de efectuar un seguimiento en la aplicación de dicho Plan de estudios, a través de una nueva metología. Para el análisis de los datos se utilizaron cuatro métodos: "Determinación de distancias entre matrices y sus respectivos valores ideales", que permitió elaborar un índice de lejanía del sistema en su conjunto; "Análisis de Componentes Principales (ACP)" seguido de un "Análisis de Conglomerados (AC)", que permitieron agrupar las materias de acuerdo con sus similitudes. Finalmente, se realizó un "Análisis Discriminante", que permitió concluir que las tasas calculadas no establecen diferencias entre las asignaturas de los ciclos Básico e Instrumental (únicamente en el caso de Ingeniería Agronómica).
Resumo:
La utilización de nuevas tecnologías asociadas a la agricultura de precisión permite capturar información de múltiples variables en gran cantidad de sitios georreferenciados dentro de lotes en producción. Las covariaciones espaciales de las propiedades del suelo y el rendimiento del cultivo pueden evaluarse a través del análisis de componentes principales clásico (PCA). No obstante, como otros métodos multivariados descriptivos, el PCA no ha sido desarrollado explícitamente para datos espaciales. Nuevas versiones de análisis multivariado permiten contemplar la autocorrelación espacial entre datos de sitios vecinos. En este trabajo se aplican y comparan los resultados de dos técnicas multivariadas, el PCA y MULTISPATI-PCA. Este último incorpora la información espacial a través del cálculo del índice de Moran entre los datos de un sitio y el dato promedio de sus vecinos. Los resultados mostraron que utilizando MULTISPATI-PCA se detectaron correlaciones entre variables que no fueron detectadas con el PCA. Los mapas de variabilidad espacial construidos a partir de la primera componente de ambas técnicas fueron similares; no así los de la segunda componente debido a cambios en la estructura de co-variación identificada, al corregir la variabilidad por la autocorrelación espacial de los datos. El método MULTISPATI-PCA constituye una herramienta importante para el mapeo de la variabilidad espacial y la identificación de zonas homogéneas dentro de lotes.
Resumo:
El objetivo fue determinar, durante dos años, el contenido de β-caroteno y su relación con el Índice de Color (IC), de ocho cultivares comerciales del tipo 'Flakkee' cultivadas en el INTA La Consulta. El diseño experimental a campo utilizado fue en bloques al azar con 3 repeticiones. Se evaluó β-caroteno (espectrofotometría a 450 nm) y se calculó el IC, mediante captación de imagen digital con PC y escáner, midiendo L, a y b del Sistema CIELAB. Los datos fueron analizados por ACP (análisis de componentes principales), la visualización de la variabilidad, por cartografiado de datos, análisis de varianza, pruebas de diferencia de medias y correlaciones. Los contenidos de β-carotenos y el IC de los cultivares se mantuvieron constantes durante los dos años estudiados, resultando las cultivares Natasha, Flakesse y Colmar las de mayor valor nutricional en cuanto a aporte de β-carotenos. En el rango de valores menores de 18 mg%g de β-carotenos, se observó una correlación positiva significativa en las cultivares Supreme, Spring y Laval. No se encontró una correlación alta lineal entre el IC y el contenido de β-carotenos. El uso del IC resulta adecuado para predecir, en un intervalo de valores, el contenido de β-carotenos en cultivares de zanahoria.
Resumo:
En este artículo se toman como objeto la antropología social y la sociología argentinas en su estado actual. Comenzando por un comentario general sobre la relación entre estas disciplinas y sobre su institucionalización en Argentina desde 1957, se pasa luego a la descripción de una de las hipotéticas dimensiones de su diferenciación basada en un análisis de componentes principales (ACP) sobre las ponencias presentadas en cuatro reuniones científicas en cuanto a la estructura de sus referentes teóricos y metodológicos. Los resultados muestran una superposición de referencias lo suficientemente importante como para asentar la idea de que las razones para la diferenciación entre estas disciplinas están lejos de obedecer a factores vinculados ala epistemología, la metodología o la teoría. Finalmente, retomando ideas de Abbott y Passeron, se argumenta sobre una posible comunidad única de cientistas sociales
Resumo:
En este artículo se toman como objeto la antropología social y la sociología argentinas en su estado actual. Comenzando por un comentario general sobre la relación entre estas disciplinas y sobre su institucionalización en Argentina desde 1957, se pasa luego a la descripción de una de las hipotéticas dimensiones de su diferenciación basada en un análisis de componentes principales (ACP) sobre las ponencias presentadas en cuatro reuniones científicas en cuanto a la estructura de sus referentes teóricos y metodológicos. Los resultados muestran una superposición de referencias lo suficientemente importante como para asentar la idea de que las razones para la diferenciación entre estas disciplinas están lejos de obedecer a factores vinculados ala epistemología, la metodología o la teoría. Finalmente, retomando ideas de Abbott y Passeron, se argumenta sobre una posible comunidad única de cientistas sociales
Resumo:
En este artículo se toman como objeto la antropología social y la sociología argentinas en su estado actual. Comenzando por un comentario general sobre la relación entre estas disciplinas y sobre su institucionalización en Argentina desde 1957, se pasa luego a la descripción de una de las hipotéticas dimensiones de su diferenciación basada en un análisis de componentes principales (ACP) sobre las ponencias presentadas en cuatro reuniones científicas en cuanto a la estructura de sus referentes teóricos y metodológicos. Los resultados muestran una superposición de referencias lo suficientemente importante como para asentar la idea de que las razones para la diferenciación entre estas disciplinas están lejos de obedecer a factores vinculados ala epistemología, la metodología o la teoría. Finalmente, retomando ideas de Abbott y Passeron, se argumenta sobre una posible comunidad única de cientistas sociales
Resumo:
The record of eolian deposition on the Ontong Java Plateau (OJP) since the Oligocene (approximately 33 Ma) has been investigated using dust grain size, dust flux, and dust mineralogy, with the goal of interpreting the paleoclimatology and paleometeorology of the western equatorial Pacific. Studies of modern dust dispersal in the Pacific have indicated that the equatorial regions receive contributions from both the Northern Hemisphere westerly winds and the equatorial easterlies; limited meteorological data suggest that low-altitude westerlies could also transport dust to OJP from proximal sources in the western Pacific. Previous studies have established the characteristics of the grain-size, flux, and mineralogy records of dust deposited in the North Pacific by the mid-latitude westerlies and in the eastern equatorial Pacific by the low-latitude easterlies since the Oligocene. By comparing the OJP records with the well-defined records of the mid-latitude westerlies and the low-latitude easterlies, the importance of multiple sources of dust to OJP can be recognized. OJP dust is composed of quartz, illite, kaolinite/chlorite, plagioclase feldspar, smectite, and heulandite. Mineral abundance profiles and principal components analysis (PCA) of the mineral abundance data have been used to identify assemblages of minerals that covary through all or part of the OJP record. Abundances of quartz, illite, and kaolinite/chlorite covary throughout the interval studied, defining a mineralogical assemblage supplied from Asia. Some plagioclase and smectite were also supplied as part of this assemblage during the late Miocene and Pliocene/Pleistocene, but other source areas have supplied significant amounts of plagioclase, smectite, and heulandite to OJP since the Oligocene. OJP dust is generally coarser than dust deposited by the Northern Hemisphere westerlies or the equatorial easterlies, and it accumulates more rapidly by 1-2 orders of magnitude. These relationships indicate the importance of the local sources on dust deposition at OJP. The grain-size and flux records of OJP dust do not exhibit most of the events observed in the corresponding records of the Northern Hemisphere westerlies or the equatorial easterlies, because these features are masked by the mixing of dust from several sources at OJP. The abundance record of the Asian dust assemblage at OJP, however, does contain most of the features characteristic of dust flux by means of the Northern Hemisphere westerlies, indicating that the paleoclimatic and paleometeorologic signal of a particular source area and wind system can be preserved in areas well beyond the region dominated by that source and those winds. Identifying such a signal requires "unmixing" the various dust assemblages, which can be accomplished by combining grain-size, flux, and mineralogic data.
Resumo:
Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0-430 ka and five records from 0-798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). When we compare the sea level stack with the d18O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic d18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the d18O of seawater.
Resumo:
El propósito de la presente investigación es determinar si, a través del estudio y análisis de los estudios de tráfico en autopistas de peaje, se pueden determinar las razones de los incumplimientos en las previsiones de estos estudios. La metodología se basa en un análisis empírico ex- post facto de los estudios de tráfico contenidos en los anteproyectos de las autopistas Radial 3 y Radial 5 y los datos realmente verificados. Tras una introducción para presentar las principales características de las autopistas de peaje, se realiza una revisión de la bibliografía sobre el cumplimiento de las previsiones de tráfico. Lo anterior permite establecer una serie de aspectos que pueden contribuir a estos incumplimientos, así como una serie de medidas encontradas para mejorar las futuras previsiones. Ya en el núcleo fundamental de la investigación, esta se centra en el análisis del cumplimiento de las previsiones de tráfico contenidas en los anteproyectos de la Radial 3 y Radial 5. Se realiza un análisis crítico de la metodología adoptada, así como de las variables e hipótesis realizadas. Tras este primer análisis, se profundiza en la fase de asignación de los estudios. Siempre con base a los tráficos reales y para el año 2006, se cuantifica el efecto en los incumplimientos, por un lado de las variables utilizadas, y por otro, del propio método ó curva de asignación. Finalmente, y con base en los hallazgos anteriores, se determinan una serie de limitaciones en el método de asignación de tráficos entre recorridos alternativos para el caso de entornos urbanos usado. El planteamiento con base a las teorías del agente racional y maximización de la utilidad esperada es criticado desde la perspectiva de la teoría de decisión bajo condiciones de riesgo planteada por Kahneman y Tversky. Para superar las limitaciones anteriores, se propone una nueva curva de asignación semi empírica que relaciona la proporción del tráfico que circula por la autopista de peaje con la velocidad media en la autovía libre alternativa. ABSTRACT The aim of this research is to confirm whether the forensic analysis of the traffic forecast studies for tolled highways may bring to light the reasons behind the lack of accuracy. The methodology used on this research is empirical and is based on the ex –post facto analysis of the real traffic numbers compared to the forecasted for the tolled highways Radial 3 and Radial 5. Firstly the main features of tolled highways are presented as an introductory chapter. Secondly a broad bibliographic search is presented, this is done from a global perspective and from the Spanish perspective too. From this review, a list of the main causes behind the systematic inaccuracy together with measures to improve future traffic forecast exercises are shown. In what we could consider as the core of the research, it focuses on the ratios of actual / forecast traffic for the tolled highways Radial 3 y Radial 5 in Madrid outskirts. From a critical perspective, the methodology and inputs used in the traffic studies are analysed. In a further step, the trip assignment stage is scrutinised to quantify the influence of the inputs and the assignment model itself in the accuracy of the traffic studies. This exercise is bases on the year 2006. Finally, the assignment model used is criticised for its application in tolled urban highways. The assumptions behind the model, rational agent and expected utility maximization theories, are questioned under the theories presented by Kahneman and Tversky (Prospect Theory). To overcome these assignment model limitations, the author presents a semi empiric new diversion curve. This curve links the traffic proportion using the tolled highway and the average speed in the toll free alternative highway.
Resumo:
This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.
Resumo:
Several methods to improve multiple distant microphone (MDM) speaker diarization based on Time Delay of Arrival (TDOA) features are evaluated in this paper. All of them avoid the use of a single reference channel to calculate the TDOA values and, based on different criteria, select among all possible pairs of microphones a set of pairs that will be used to estimate the TDOA's. The evaluated methods have been named the "Dynamic Margin" (DM), the "Extreme Regions" (ER), the "Most Common" (MC), the "Cross Correlation" (XCorr) and the "Principle Component Analysis" (PCA). It is shown that all methods improve the baseline results for the development set and four of them improve also the results for the evaluation set. Improvements of 3.49% and 10.77% DER relative are obtained for DM and ER respectively for the test set. The XCorr and PCA methods achieve an improvement of 36.72% and 30.82% DER relative for the test set. Moreover, the computational cost for the XCorr method is 20% less than the baseline.
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.
Resumo:
El objetivo principal alrededor del cual se desenvuelve este proyecto es el desarrollo de un sistema de reconocimiento facial. Entre sus objetivos específicos se encuentran: realizar una primera aproximación sobre las técnicas de reconocimiento facial existentes en la actualidad, elegir una aplicación donde pueda ser útil el reconocimiento facial, diseñar y desarrollar un programa en MATLAB que lleve a cabo la función de reconocimiento facial, y evaluar el funcionamiento del sistema desarrollado. Este documento se encuentra dividido en cuatro partes: INTRODUCCIÓN, MARCO TEÓRICO, IMPLEMENTACIÓN, y RESULTADOS, CONCLUSIONES Y LÍNEAS FUTURAS. En la primera parte, se hace una introducción relativa a la actualidad del reconocimiento facial y se comenta brevemente sobre las técnicas existentes para desarrollar un sistema biométrico de este tipo. En ella se justifican también aquellas técnicas que acabaron formando parte de la implementación. En la segunda parte, el marco teórico, se explica la estructura general que tiene un sistema de reconocimiento biométrico, así como sus modos de funcionamiento, y las tasas de error utilizadas para evaluar y comparar su rendimiento. Así mismo, se lleva a cabo una descripción más profunda sobre los conceptos y métodos utilizados para efectuar la detección y reconocimiento facial en la tercera parte del proyecto. La tercera parte abarca una descripción detallada de la solución propuesta. En ella se explica el diseño, características y aplicación de la implementación; que trata de un programa elaborado en MATLAB con interfaz gráfica, y que utiliza cuatro sistemas de reconocimiento facial, basados cada uno en diferentes técnicas: Análisis por componentes principales, análisis lineal discriminante, wavelets de Gabor, y emparejamiento de grafos elásticos. El programa ofrece además la capacidad de crear y editar una propia base de datos con etiquetas, dándole aplicación directa sobre el tema que se trata. Se proponen además una serie de características con el objetivo de ampliar y mejorar las funcionalidades del programa diseñado. Dentro de dichas características destaca la propuesta de un modo de verificación híbrido aplicable a cualquier rama de la biometría y un programa de evaluación capaz de medir, graficar, y comparar las configuraciones de cada uno de los sistemas de reconocimiento implementados. Otra característica destacable es la herramienta programada para la creación de grafos personalizados y generación de modelos, aplicable a reconocimiento de objetos en general. En la cuarta y última parte, se presentan al principio los resultados obtenidos. En ellos se contemplan y analizan las comparaciones entre las distintas configuraciones de los sistemas de reconocimiento implementados para diferentes bases de datos (una de ellas formada con imágenes con condiciones de adquisición no controladas). También se miden las tasas de error del modo de verificación híbrido propuesto. Finalmente, se extraen conclusiones, y se proponen líneas futuras de investigación. ABSTRACT The main goal of this project is to develop a facial recognition system. To meet this end, it was necessary to accomplish a series of specific objectives, which were: researching on the existing face recognition technics nowadays, choosing an application where face recognition might be useful, design and develop a face recognition system using MATLAB, and measure the performance of the implemented system. This document is divided into four parts: INTRODUCTION, THEORTICAL FRAMEWORK, IMPLEMENTATION, and RESULTS, CONCLUSSIONS AND FUTURE RESEARCH STUDIES. In the first part, an introduction is made in relation to facial recognition nowadays, and the techniques used to develop a biometric system of this kind. Furthermore, the techniques chosen to be part of the implementation are justified. In the second part, the general structure and the two basic modes of a biometric system are explained. The error rates used to evaluate and compare the performance of a biometric system are explained as well. Moreover, a description of the concepts and methods used to detect and recognize faces in the third part is made. The design, characteristics, and applications of the systems put into practice are explained in the third part. The implementation consists in developing a program with graphical user interface made in MATLAB. This program uses four face recognition systems, each of them based on a different technique: Principal Component Analysis (PCA), Fisher’s Linear Discriminant (FLD), Gabor wavelets, and Elastic Graph Matching (EGM). In addition, with this implementation it is possible to create and edit one´s tagged database, giving it a direct application. Also, a group of characteristics are proposed to enhance the functionalities of the program designed. Among these characteristics, three of them should be emphasized in this summary: A proposal of an hybrid verification mode of a biometric system; and an evaluation program capable of measuring, plotting curves, and comparing different configurations of each implemented recognition system; and a tool programmed to create personalized graphs and models (tagged graph associated to an image of a person), which can be used generally in object recognition. In the fourth and last part of the project, the results of the comparisons between different configurations of the systems implemented are shown for three databases (One of them created with pictures taken under non-controlled environments). The error rates of the proposed hybrid verification mode are measured as well. Finally, conclusions are extracted and future research studies are proposed.
Resumo:
The application of the Electro-Mechanical Impedance (EMI) method for damage detection in Structural Health Monitoring has noticeable increased in recent years. EMI method utilizes piezoelectric transducers for directly measuring the mechanical properties of the host structure, obtaining the so called impedance measurement, highly influenced by the variations of dynamic parameters of the structure. These measurements usually contain a large number of frequency points, as well as a high number of dimensions, since each frequency range swept can be considered as an independent variable. That makes this kind of data hard to handle, increasing the computational costs and being substantially time-consuming. In that sense, the Principal Component Analysis (PCA)-based data compression has been employed in this work, in order to enhance the analysis capability of the raw data. Furthermore, a Support Vector Machine (SVM), which has been widespread used in machine learning and pattern recognition fields, has been applied in this study in order to model any possible existing pattern in the PCAcompress data, using for that just the first two Principal Components. Different known non-damaged and damaged measurements of an experimental tested beam were used as training input data for the SVM algorithm, using as test input data the same amount of cases measured in beams with unknown structural health conditions. Thus, the purpose of this work is to demonstrate how, with a few impedance measurements of a beam as raw data, its healthy status can be determined based on pattern recognition procedures.
Resumo:
Video analytics play a critical role in most recent traffic monitoring and driver assistance systems. In this context, the correct detection and classification of surrounding vehicles through image analysis has been the focus of extensive research in the last years. Most of the pieces of work reported for image-based vehicle verification make use of supervised classification approaches and resort to techniques, such as histograms of oriented gradients (HOG), principal component analysis (PCA), and Gabor filters, among others. Unfortunately, existing approaches are lacking in two respects: first, comparison between methods using a common body of work has not been addressed; second, no study of the combination potentiality of popular features for vehicle classification has been reported. In this study the performance of the different techniques is first reviewed and compared using a common public database. Then, the combination capabilities of these techniques are explored and a methodology is presented for the fusion of classifiers built upon them, taking into account also the vehicle pose. The study unveils the limitations of single-feature based classification and makes clear that fusion of classifiers is highly beneficial for vehicle verification.