908 resultados para NEUROMUSCULAR DISEASES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular data are now widely used in epidemiological studies to investigate the transmission, distribution, biology, and diversity of pathogens. Our objective was to establish recommendations to support good scientific reporting of molecular epidemiological studies to encourage authors to consider specific threats to valid inference. The statement Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID) builds upon the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) initiative. The STROME-ID statement was developed by a working group of epidemiologists, statisticians, bioinformaticians, virologists, and microbiologists with expertise in control of infection and communicable diseases. The statement focuses on issues relating to the reporting of epidemiological studies of infectious diseases using molecular data that were not addressed by STROBE. STROME-ID addresses terminology, measures of genetic diversity within pathogen populations, laboratory methods, sample collection, use of molecular markers, molecular clocks, timeframe, multiple-strain infections, non-independence of infectious-disease data, missing data, ascertainment bias, consistency between molecular and epidemiological data, and ethical considerations with respect to infectious-disease research. In total, 20 items were added to the 22 item STROBE checklist. When used, the STROME-ID recommendations should advance the quality and transparency of scientific reporting, with clear benefits for evidence reviews and health-policy decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central event in protein misfolding disorders (PMDs) is the accumulation of a misfolded form of a naturally expressed protein. Despite the diversity of clinical symptoms associated with different PMDs, many similarities in their mechanism suggest that distinct pathologies may cross talk at the molecular level. The main goal of this study was to analyze the interaction of the protein misfolding processes implicated in Alzheimer's and prion diseases. For this purpose, we inoculated prions in an Alzheimer's transgenic mouse model that develop typical amyloid plaques and followed the progression of pathological changes over time. Our findings show a dramatic acceleration and exacerbation of both pathologies. The onset of prion disease symptoms in transgenic mice appeared significantly faster with a concomitant increase on the level of misfolded prion protein in the brain. A striking increase in amyloid plaque deposition was observed in prion-infected mice compared with their noninoculated counterparts. Histological and biochemical studies showed the association of the two misfolded proteins in the brain and in vitro experiments showed that protein misfolding can be enhanced by a cross-seeding mechanism. These results suggest a profound interaction between Alzheimer's and prion pathologies, indicating that one protein misfolding process may be an important risk factor for the development of a second one. Our findings may have important implications to understand the origin and progression of PMDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We postulated that neuromuscular disuse results in deleteriously affected tissue-vascular fluid exchange processes and subsequently damages the important oxidative bioenergetic process of intramuscular lipid metabolism. The in-depth research reported in the literature is somewhat limited by the ex vivo nature and sporadic time-course characterization of disuse atrophy and recovery. Thus, an in vivo controlled, localized animal model of disuse atrophy was developed in one of the hindlimbs of laboratory rabbits (employing surgically implanted tetrodotoxin (TTX)-filled mini-osmotic pump-sciatic nerve superfusion system) and tested repeatedly with magnetic resonance (MR) throughout the 2-week period of temporarily induced disuse and during the recovery period (following explantation of the TTX-filled pump) for a period of 3 weeks. Controls consisted of saline/"sham"-implanted rabbit hindlimbs. The validity of this model was established with repeated electrophysiologic nerve conduction testing using a clinically appropriate protocol and percutaneously inserted small needle stimulating and recording electrodes. Evoked responses recorded from proximal (P) and distal (D) sites to the sciatic nerve cuff in the TTX-implanted group revealed significantly decreased (p $<$ 0.001) proximal-to-distal (P/D) amplitude ratios (as much as 50-70% below Baseline/pre-implanted and sham-implanted group values) and significantly increased (p $<$ 0.01) differential latency (PL-DL) values (as much as 1.5 times the pre- and sham-implanted groups). By Day 21 of recovery, observed P/D and PL-DL levels matched Baseline/sham-implemented levels. MRI-determined cross-sectional area (CSA) values of Baseline/pre-implanted, sham- or TTX-implanted, and recovering/explanted and the corresponding contralateral hindlimb tibialis anterior (TA) muscles normalized to tibial bone (TB) CSA (in TA/TB ratios) revealed that there was a significant decline (indicative of atrophic response) from pre- and sham-implanted controls by as much as 20% (p $<$ 0.01) at Day 7 and 50-55% (p $<$ 0.001) at Day 13 of TTX-implantation. In the non-implanted contralaterals, a significant increase (indicative of hypertrophic response) by as much as 10% (p $<$ 0.025) at Day 7 and 27% (p $<$ 0.001) at Day 13 + TTX was found. The induced atrophic/hypertrophic TA muscles were observed to be fully recovered by Day 21 post-explantation as evidenced by image TA/TB ratios. End-point biopsy results from a small group of rabbits revealed comprehensive atrophy of both Type I and Type II fibers, although the heterogeneity of the response supports the use of image-guided, volume-localized proton magnetic resonance spectroscopy (MRS) to noninvasively assess tissue-level metabolic changes. MRS-determined results of a 0.25cc volume of tissue within implanted limb TA muscles under resting/pre-ischemic, ischemic-stressed, and post-ischemic conditions at timepoints during and following disuse atrophy/recovery revealed significantly increased intramuscular spectral lipid levels, as much as 2-3 times (p $<$ 0.01) the Baseline/pre-implanted values at Day 7 and 6-7 times (p $<$ 0.001) at Day 13 + TTX, which approached normal levels (compared to pre- and sham-implanted groups) by Day 21 of post-explanation recovery. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The loss of skeletal muscle mass is believed to be the dominant reason for reduced strength in aging humans. The purpose of this investigation was to gain some information as to why skeletal muscles lose mass as we age. Since nervous system innervation is essential for skeletal muscle fiber viability, incomplete regional reinnervation during normal synaptic junction turnover has been hypothesized to result in selective muscle fiber loss. Examined here was the age-related association in skeletal muscle between atrophy and the expression of mRNAs encoding the γ- and ϵ-subunits of the nicotinic acetylcholine receptor, myogenin, and muscle specific receptor kinase (MuSK). Gastrocnemius and biceps brachii muscles were collected from young (2 month), adult (18 month), and old (31 month) Fischer 344 cross brown Norway F 1 male rats. In the gastrocnemius, muscles of old vs. young and adult rats, lower muscle mass was accompanied by significantly elevated acetylcholine receptor γ-subunit, myogenin, and MuSK mRNA levels. In contrast, the biceps brachii muscle in the same animals exhibited neither atrophy nor a change in acetylcholine receptor γ-subunit, myogenin, or MuSK mRNA levels. Expression of the acetylcholine receptor ϵ-subunit mRNA did not change with age in either gastrocnemius or biceps brachii muscles. Since acetylcholine receptor γ-subunit, myogenin, and MuSK mRNA levels are upregulated in surgically denervated skeletal muscles of young rats while expression of the acetylcholine receptor ϵ-subunit does not change, the findings of the current investigation suggest that a select fiber population within atrophied skeletal muscles of old rats may be in a denervated-like state. I speculate that increases in γ-subunit, myogenin, and MuSK mRNA levels in atrophied muscles of old rats are compensatory responses to nerve terminal retraction. Indeed, a prolongation of denervation in these muscle fibers would subsequently result in their atrophy and death, ultimately leading to a decline in the number of force generating elements present in the muscle. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS As 4-day-old mice of the severe spinal muscular atrophy (SMA) model (dying at 5-8 days) display pronounced neuromuscular changes in the diaphragm but not the soleus muscle, we wanted to gain more insight into the relationship between muscle development and the emergence of pathological changes and additionally to analyse intercostal muscles which are affected in human SMA. METHODS Structures of muscle fibres and neuromuscular junctions (NMJs) of the diaphragm, intercostal and calf muscles of prenatal (E21) and postnatal (P0 and P4) healthy and SMA mice were analysed by light and transmission electron microscopy. NMJ innervation was studied by whole mount immunofluorescence in diaphragms of P4 mice. RESULTS During this period, the investigated muscles still show a significant neck-to-tail developmental gradient. The diaphragm and calf muscles are most and least advanced, respectively, with respect to muscle fibre fusion and differentiation. The number and depth of subsynaptic folds increases, and perisynaptic Schwann cells (PSCs) acquire a basal lamina on their outer surface. Subsynaptic folds are connected to an extensive network of tubules and beaded caveolae, reminiscent of the T system in adult muscle. Interestingly, intercostal muscles from P4 SMA mice show weaker pathological involvement (that is, vacuolization of PSCs and perineurial cells) than those previously described by us for the diaphragm, whereas calf muscles show no pathological changes. CONCLUSION SMA-related alterations appear to occur only when the muscles have reached a certain developmental maturity. Moreover, glial cells, in particular PSCs, play an important role in SMA pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Internet-based surveys provide a potentially important tool for Inflammatory Bowel Disease (IBD) research. The advantages include low cost, large numbers of participants, rapid study completion and less extensive infrastructure than traditional methods. The aim was to determine the accuracy of patient self-reporting in internet-based IBD research and identify predictors of greater reliability. METHODS: 197 patients from a tertiary care center answered an online survey concerning personal medical history and an evaluation of disease specific knowledge. Self-reported medical details were compared with data abstracted from medical records. Agreement was assessed by kappa (κ) statistics. RESULTS: Participants responded correctly with excellent agreement (κ=0.96-0.97) on subtype of IBD and history of surgery. The agreement was also excellent for colectomy (κ=0.88) and small bowel resection (κ=0.91), moderate for abscesses and fistulas (κ=0.60 and 0.63), but poor regarding partial colectomy (κ=0.39). Time since last colonoscopy was self-reported with better agreement (κ=0.84) than disease activity. For disease location/extent, moderate agreements at κ=69% and 64% were observed for patients with Crohn's disease and ulcerative colitis, respectively. Subjects who scored higher than the average in the IBD knowledge assessment were significantly more accurate about disease location than their complementary group (74% vs. 59%, p=0.02). CONCLUSION: This study demonstrates that IBD patients accurately report their medical history regarding type of disease and surgical procedures. More detailed medical information is less reliably reported. Disease knowledge assessment may help in identifying the most accurate individuals and could therefore serve as validity criteria. Internet-based surveys are feasible with high reliability about basic disease features only. However, the participants in this study were engaged at a tertiary center, which potentially leads to a bias and compromises generalization to an unfiltered patient group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complex interaction among metabolic factors, adipose tissue lipolysis, oxidative stress, and insulin resistance results in a deleterious process that may link nonalcoholic fatty liver disease (NAFLD) with severe cardiovascular (CV) outcomes. Patients with NAFLD are at higher risk of atherosclerosis, new onset of CV events, and overall mortality. The strong association between NAFLD and CV disease should affect clinical practice, with screening and surveillance of patients with NAFLD. This review discusses the data linking these major diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) provide metabolic information on the musculoskeletal system, thus helping to understand the biochemical and pathophysiological nature of numerous diseases. In particular, MRS has been used to study the energy metabolism of muscular tissue since the very beginning of magnetic resonance examinations in humans when small-bore magnets for studies of the limbs became available. Even more than in other organs, the observation of non-proton-nuclei was important in muscle tissue. Spatial localization was less demanding in these studies, however, high temporal resolution was necessary to follow metabolism during exercise and recovery. The observation of high-energy phosphates during and after the application of workload gives insight into oxidative phosphorylation, a process that takes place in the mitochondria and characterizes impaired mitochondrial function. New applications in insulin-resistant patients followed the development of volume-selective 1H-MRS in whole-body magnets. Nowadays, multinuclear MRS and MRSI of the musculoskeletal system provide several windows to vital biochemical pathways noninvasively. It is shown how MRS and MRSI have been used in numerous diseases to characterize an involvement of the muscular metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Full text is available at http://www.manu.edu.mk/prilozi). New generation genomic platforms enable us to decipher the complex genetic basis of complex diseases and Balkan Endemic Nephropathy (BEN) at a high-throughput basis. They give valuable information about predisposing Single Nucleotide Polymorphisms (SNPs), Copy Number Variations (CNVs) or Loss of Heterozygosity (LOH) (using SNP-array) and about disease-causing mutations along the whole sequence of candidate-genes (using Next Generation Sequencing). This information could be used for screening of individuals in risk families and moving the main medicine stream to the prevention. They also might have an impact on more effective treatment. Here we discuss these genomic platforms and report some applications of SNP-array technology in a case with familial nephrotic syndrome. Key words: complex diseases, genome wide association studies, SNP, genomic arrays, next generation sequ-encing.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic predispositions for guttural pouch tympany, recurrent laryngeal neuropathy and recurrent airway obstruction (RAO) are well documented. There is also evidence that exercise-induced pulmonary haemorrhage and infectious diseases of the respiratory tract in horses have a genetic component. The clinical expression of equine respiratory diseases with a genetic basis results from complex interactions between the environment and the genetic make-up of each individual horse. The genetic effects are likely to be due to variations in several genes, i.e. they are polygenic. It is therefore unlikely that single gene tests will be diagnostically useful in these disorders. Genetic profiling panels, combining several genetic factors with an assessment of environmental risk factors, may have greater value, but much work is still needed to uncover diagnostically useful genetic markers or even causative variants for equine respiratory diseases. Nonetheless, chromosomal regions associated with guttural pouch tympany, recurrent laryngeal neuropathy and RAO have been identified. The association of RAO with other hypersensitivities and with resistance to intestinal parasites requires further study. This review aims to provide an overview of the available data and current thoughts on the genetics of equine airway diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contracted flexor tendon leading to flexural deformity is a common congenital defect in cattle. Arthrogryposis is a congenital syndrome of persistent joint contracture that occurs frequently in Europe as a consequence of Schmallenberg virus infection of the dam. Spastic paresis has a hereditary component, and affected cattle should not be used for breeding purposes. The most common tendon avulsion involves the deep digital flexor tendon. Tendon disruptions may be successfully managed by tenorrhaphy and external coaptation or by external coaptation alone. Medical management alone is unlikely to be effective for purulent tenosynovitis.